SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gong X.) srt2:(2020-2024)"

Search: WFRF:(Gong X.) > (2020-2024)

  • Result 1-10 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  •  
3.
  •  
4.
  • Callaway, EM, et al. (author)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Journal article (peer-reviewed)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
5.
  •  
6.
  • Tang, X. D., et al. (author)
  • Kinetic temperature of massive star-forming molecular clumps measured with formaldehyde: IV. The ALMA view of N113 and N159W in the LMC
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Journal article (peer-reviewed)abstract
    • We mapped the kinetic temperature structure of two massive star-forming regions, N113 and N159W, in the Large Magellanic Cloud (LMC). We have used 1.6 (0.4 pc) resolution measurements of the para-H2CO JKaKc = 303-202, 322-221, and 321-220 transitions near 218.5 GHz to constrain RADEX non local thermodynamic equilibrium models of the physical conditions. The gas kinetic temperatures derived from the para-H2CO line ratios 322-221/303-202 and 321-220/303-202 range from 28 to 105 K in N113 and 29 to 68 K in N159W. Distributions of the dense gas traced by para-H2CO agree with those of the 1.3 mm dust and Spitzer 8.0 μm emission, but they do not significantly correlate with the Hα emission. The high kinetic temperatures (Tkin50 K) of the dense gas traced by para-H2CO appear to be correlated with the embedded infrared sources inside the clouds and/or young stellar objects in the N113 and N159W regions. The lower temperatures (Tkin < 50 K) were measured at the outskirts of the H2CO-bearing distributions of both N113 and N159W. It seems that the kinetic temperatures of the dense gas traced by para-H2CO are weakly affected by the external sources of the Hα emission. The non thermal velocity dispersions of para-H2CO are well correlated with the gas kinetic temperatures in the N113 region, implying that the higher kinetic temperature traced by para-H2CO is related to turbulence on a 0.4 pc scale. The dense gas heating appears to be dominated by internal star formation activity, radiation, and/or turbulence. It seems that the mechanism heating the dense gas of the star-forming regions in the LMC is consistent with that in Galactic massive star-forming regions located in the Galactic plane.
  •  
7.
  • Chen, S. C., et al. (author)
  • Development of A Minimum Dataset for the Monitoring of Recombinant Human Growth Hormone (rhGH) Therapy Use in Children with Growth Hormone Deficiency (GHD) - A GloBE-Reg Initiative
  • 2023
  • In: Hormone Research in Paediatrics. - 1663-2818 .- 1663-2826.
  • Journal article (peer-reviewed)abstract
    • Introduction Although there are some recommendations in the literature on the assessments that should be performed in children on recombinant human growth hormone (rhGH) therapy, the level of consensus on these measurements is not clear. The objective of the current study was to identify the minimum dataset (MDS) that could be measured in a routine clinical setting across the world, aiming to minimise burden on clinicians and improve quality of data collection. Methods This study was undertaken by the GH Scientific Study Group (SSG) in GloBE-Reg, a new project that has developed a common registry platform that can support long-term safety and effectiveness studies of drugs. Twelve clinical experts from 7 international endocrine organisations identified by the GloBE-Reg Steering Committee, 2 patient representatives and representatives from 2 pharmaceutical companies with previous GH registry expertise collaborated to develop this recommendation. A comprehensive list of data fields routinely collected by each of the clinical and industry experts for children with GHD was compiled. Each member was asked to determine the: (1) Importance of the data field and (2) Ease of data collection. Data fields that achieved 70% consensus in terms of importance qualified for the MDS, provided <50% deemed the item difficult to collect.Results A total of 246 items were compiled and 27 removed due to redundancies, with 219 items subjected to the grading system. Of the 219 items, 111 achieved at least 70% consensus as important data to collect when monitoring children with GH deficiency (GHD) on rhGH treatment. Sixty-nine of the 219 items were deemed easy to collect. Combining the criteria of importance and ease of data collection, 63 met the criteria for the MDS. Several anomalies to the MDS rule were identified and highlighted for discussion, including whether the patients were involved in current or previous clinical trials, need for HbA1c monitoring, other past medical history, and adherence, enabling formulation of the final MDS recommendation of 43 items; 20 to be completed once, 14 every 6 months and 9 every 12 months.Conclusion In summary, this exercise performed through the GloBE-Reg initiative provides a recommendation of the minimum dataset requirement, collected through real-world data, for the monitoring of safety and effectiveness of rhGH in children with GHD, both for the current daily preparations and the newer long-acting growth hormone.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view