SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gorai Prasanta 1991) srt2:(2023)"

Sökning: WFRF:(Gorai Prasanta 1991) > (2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cosentino, Giuliana, 1990, et al. (författare)
  • Deuterium fractionation across the infrared-dark cloud G034.77-00.55 interacting with the supernova remnant W44
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. Aims. To test this scenario, we measured the deuteration of N2H+, DNfrac 2H+- a well-studied tracer of pre-stellar cores - across the infrared-dark cloud (IRDC) G034.77-00.55, which is known to be experiencing a shock interaction with the SNR W44. Methods. We use N2H+ and N2D+ J = 1-0 single pointing observations obtained with the 30m antenna at the Instituto de Radioastronomia Millimetrica to infer DN2H+ frac towards five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump, and ambient gas. Results. We find DN2H+ frac in the range 0.03-0.1, which is several orders of magnitude larger than the cosmic D/H ratio (∼10-5). The DN2H+ frac across the shock front is enhanced by more than a factor of 2 (DNfrac 2H+∼ 0.05-0.07) with respect to the ambient gas (=0.03) and similar to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DN2H+ frac ∼ 0.1.
  •  
2.
  • Fedriani, Rubén, 1991, et al. (författare)
  • The SOFIA Massive (SOMA) Star Formation Survey. IV. Isolated Protostars
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 942:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present similar to 10-40 mu m SOFIA-FORCAST images of 11 isolated protostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37 mu m imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core masses M ( c ) ranging from 20-430 M (circle dot), clump mass surface densities sigma(cl) similar to 0.3-1.7 g cm(-2), and current protostellar masses m (*) similar to 3-50 M (circle dot). From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold sigma(cl) for massive star formation. However, the upper end of the m (*)-sigma(cl) distribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher sigma(cl) conditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an similar to 40 yr baseline.
  •  
3.
  • Bhat, Bratati, et al. (författare)
  • Chemical Evolution of Some Selected Complex Organic Molecules in Low-mass Star-forming Regions
  • 2023
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 958:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The destiny of complex organic molecules (COMs) in star-forming regions is interlinked with various evolutionary phases. Therefore, identifying these species in diversified environments of identical star-forming regions would help to understand their physical and chemical heritage. We identified multiple COMs utilizing the Large Program Astrochemical Surveys At Institut de Radio Astronomie Millimétrique (IRAM) data, dedicated to chemical surveys in Sun-like star-forming regions with the IRAM 30 m telescope. It was an unbiased survey in the millimeter regime, covering the prestellar core, protostar, outflow region, and protoplanetary disk phase. Here, we report the transitions of seven COMs, namely, methanol (CH3OH), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), ethanol (C2H5OH), propynal (HCCCHO), dimethyl ether (CH3OCH3), and methyl cyanide (CH3CN) in sources L1544, B1-b, IRAS4A, and SVS13A. We found a trend among these species from the derived abundances using the rotational diagram method and Monte Carlo Markov chain fitting. We have found that the abundances of all of the COMs, except for HCCCHO, increase from the L1544 (prestellar core) and peaks at IRAS16293-2422 (class 0 phase). It is noticed that the abundance of these molecules correlates with the luminosity of the sources. The obtained trend is also visible from the previous interferometric observations and considering the beam dilution effect.
  •  
4.
  • Mondal, Suman Kumar, et al. (författare)
  • Investigating the hot molecular core, G10.47+0.03: A pit of nitrogen-bearing complex organic molecules
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Recent observations have shown that Nitrogen-bearing complex organic species are present in large quantities in star-forming regions. Thus, investigating the N-bearing species in a hot molecular core, such as G10.47+0.03, is crucial to understanding the molecular complexity in star-forming regions. They also allow us to investigate the chemical and physical processes that determine the many phases during the structural and chemical evolution of the source in star-forming regions. Aims. The aim of this study is to investigate the spatial distribution and the chemical evolution states of N-bearing complex organic molecules in the hot core G10.47+0.03. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA) archival data of the hot molecular core G10.47+0.03. The extracted spectra were analyzed assuming local thermodynamic equilibrium (LTE). LTE methods are used to estimate the column density of observed species. Furthermore, robust methods such as Markov chain Monte Carlo (MCMC) and rotational diagram methods are implemented for molecules for which multiple transitions were identified to constrain the temperature and column density. Finally, we used the Nautilus gas-grain code to simulate the nitrogen chemistry in the hot molecular core. We carried out both 0D and 1D simulations of the source. We compared the simulated abundances with observational results. Results. We report various transitions of nitrogen-bearing species (NH2CN, HC3N, HC5N, C2H3CN, C2H5CN, and H2NCH2CN) together with some of their isotopologues and isomers. Besides this, we also report the identification of CH3CCH and one of its isotopologues. We present detailed chemical simulation results to investigate the possible N-bearing chemistry in the source. Conclusions. In this study, various transitions of nitrogen-bearing molecules are identified and discussed. The emissions originating from vinyl cyanide, ethyl cyanide, cyanoacetylene, and cyanamide are compact, which could be explained by our astrochemical modeling. Our 0D model shows that the chemistry of certain N-bearing molecules can be very sensitive to initial local conditions such as density or dust temperature. In our 1D model, simulated higher abundances of species such as HCN, HC3N, and HC5N toward the inner shells of the source confirm the observational findings.
  •  
5.
  • Taniguchi, Kotomi, et al. (författare)
  • Digging into the Interior of Hot Cores with the ALMA (DIHCA). III. The Chemical Link between NH 2 CHO, HNCO, and H 2 CO
  • 2023
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 950:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analyzed the NH2CHO, HNCO, H2CO, and CH3CN (13CH3CN) molecular lines at an angular resolution of ∼0.″3 obtained by the Atacama Large Millimeter/submillimeter Array Band 6 toward 30 high-mass star-forming regions. The NH2CHO emission has been detected in 23 regions, while the other species have been detected toward 29 regions. A total of 44 hot molecular cores (HMCs) have been identified using the moment 0 maps of the CH3CN line. The fractional abundances of the four species have been derived at each HMC. In order to investigate pure chemical relationships, we have conducted a partial correlation test to exclude the effect of temperature. Strong positive correlations between NH2CHO and HNCO (ρ = 0.89) and between NH2CHO and H2CO (0.84) have been found. These strong correlations indicate their direct chemical links; dual-cyclic hydrogen addition and abstraction reactions between HNCO and NH2CHO and gas-phase formation of NH2CHO from H2CO. Chemical models including these reactions can reproduce the observed abundances in our target sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy