SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gorbunova V) srt2:(2020-2023)"

Sökning: WFRF:(Gorbunova V) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gorbunova, Anna S., et al. (författare)
  • Prognostic signature based on mitochondria quality control proteins for the prediction of lung adenocarcinoma patients survival
  • 2023
  • Ingår i: Cell Death Discovery. - : Springer Nature. - 2058-7716. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer is the leading cause of cancer mortality worldwide. In recent years, the incidence of lung cancer subtype lung adenocarcinoma (LUAD) has steadily increased. Mitochondria, as a pivotal site of cell bioenergetics, metabolism, cell signaling, and cell death, are often dysregulated in lung cancer cells. Mitochondria maintenance and integrity depend on mitochondrial quality control proteins (MQCPs). During lung cancer progression, the levels of MQCPs could change and promote cancer cell adaptation to the microenvironment and stresses. Here, univariate and multivariate proportional Cox regression analyses were applied to develop a signature based on the level of MQCPs (dimeric form of BNIP3, DRP1, and SIRT3) in tumorous and non-tumorous samples of 80 patients with LUAD. The MQCP signature could be used to separate the patients with LUAD into high- and low-risk groups. Survival analysis indicated that patients in the high-risk group had dramatically shorter overall survival compared with the low-risk patients. Moreover, a nomogram combining clinicopathologic features and the MQCP signature was constructed and validated to predict 1-, 3-, and 5-year overall survival of the patients. Thus, this study presents a novel signature based on MQCPs as a reliable prognostic tool to predict overall survival for patients with LUAD.
  •  
2.
  • Zamaraev, Alexey V., et al. (författare)
  • Requirement for Serine-384 in Caspase-2 processing and activity
  • 2020
  • Ingår i: Cell Death and Disease. - : SPRINGERNATURE. - 2041-4889 .- 2041-4889. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Caspase-2 is a unique and conservative cysteine protease which plays an important role in several cellular processes including apoptotic cell death. Although the molecular mechanisms of its activation remain largely unclear, a major role belongs to the architecture of the caspase-2 active center. We demonstrate that the substitution of the putative phosphorylation site of caspase-2, Serine-384 to Alanine, blocks caspase-2 processing and decreases its enzymatic activity. Strikingly, in silico analysis using molecular dynamics simulations has shown that Serine-384 is crucially involved in interactions within the caspase-2 active center. It stabilizes Arginine-378, which forms a crucial hydrogen bond with the aspartate residue of a substrate. Hence, Serine-384 is essential for supporting a proper architecture of the active center of caspase-2. Moreover, molecular modeling strongly proved steric inaccessibility of Ser-384 to be phosphorylated. Importantly, a multiple alignment has demonstrated that both Serine-384 and Arg-378 residues are highly conservative across all members of caspase family, which allows us to suggest that this diade is indispensable for caspase processing and activity. Spontaneous mutations in this diade might influence oncosuppressive function of caspases, in particular of caspase-2. Likewise, the mutation of Ser-384 is associated with the development of lung squamous cell carcinoma and adenocarcinoma. Taken together, we have uncovered a central feature of the caspase-2 activation mechanism which is crucial for the regulation of its signaling network.
  •  
3.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy