SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gozzini R) srt2:(2010-2014)"

Sökning: WFRF:(Gozzini R) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbasi, R., et al. (författare)
  • Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector
  • 2010
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 81:5, s. 057101-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross sections for LKP masses in the range 250-3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.
  •  
2.
  • Abbasi, R., et al. (författare)
  • Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy
  • 2010
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 33:5-6, s. 277-286
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at similar to 5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background. (C) 2010 Elsevier B.V. All rights reserved.
  •  
3.
  • Abbasi, R., et al. (författare)
  • Search for muon neutrinos from gamma-ray bursts with the IceCube neutrino telescope
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 710:1, s. 346-359
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to + 3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10(-3) erg cm(-2) (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10(-3) erg cm(-2) (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10(-3) erg cm(-2) (3 TeV-2.8 PeV) assuming an E-2 flux.
  •  
4.
  • Aleksic, J., et al. (författare)
  • Discovery of VHE gamma-rays from the blazar 1ES 1215+303 with the MAGIC telescopes and simultaneous multi-wavelength observations
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 544, s. A142-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present the discovery of very high energy (VHE, E > 100 GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We study the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in 2011 January-February for 20.3 h. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Metsahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in 2011 January-February resulted in the first detection of the source at VHE with a statistical significance of 9.4 sigma. Simultaneously, the source was observed in a high optical and X-ray state. In 2010 the source was observed in a lower state in optical, X-ray, and VHE, while the GeV gamma-ray flux and the radio flux were comparable in 2010 and 2011. The spectral energy distribution obtained with the 2011 data can be modeled with a simple one zone SSC model, but it requires extreme values for the Doppler factor or the electron energy distribution.
  •  
5.
  • Aleksic, J., et al. (författare)
  • MAGIC reveals a complex morphology within the unidentified gamma-ray source HESS J1857+026
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 571
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H. E. S. S. as part of its Galactic plane survey. Given its broadband spectral energy distribution and its spatial coincidence with the young energetic pulsar PSR J1856+0245, the source has been put forward as a pulsar wind nebula (PWN) candidate. MAGIC has performed follow-up observations aimed at mapping the source down to energies approaching 100 GeV in order to better understand its complex morphology. Methods. HESS J1857+026 was observed by MAGIC in 2010, yielding 29 h of good quality stereoscopic data that allowed us to map the source region in two separate ranges of energy. Results. We detected very-high-energy gamma-ray emission from HESS J1857+026 with a significance of 12 sigma above 150 GeV. The differential energy spectrum between 100 GeV and 13 TeV is described well by a power law function dN/dE = N-0(E/1TeV)(-Gamma) with N-0 = (5.37 +/- 0.44(stat) +/- 1.5(sys)) X 10(-12) (TeV-1 cm(-2) s(-1)) and Gamma = 2.16 +/- 0.07(stat) +/- 0.15(sys), which bridges the gap between the GeV emission measured by Fermi-LAT and the multi-TeV emission measured by H.E.S.S.. In addition, we present a detailed analysis of the energy-dependent morphology of this region. We couple these results with archival multiwavelength data and outline evidence in favor of a two-source scenario, whereby one source is associated with a PWN, while the other could be linked with a molecular cloud complex containing an HII region and a possible gas cavity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy