SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Graafsma H.) srt2:(2011-2014)"

Sökning: WFRF:(Graafsma H.) > (2011-2014)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pedersoli, E., et al. (författare)
  • Mesoscale morphology of airborne core-shell nanoparticle clusters : x-ray laser coherent diffraction imaging
  • 2013
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 46:16 SI, s. 164033-
  • Tidskriftsartikel (refereegranskat)abstract
    • Unraveling the complex morphology of functional materials like core-shell nanoparticles and its evolution in different environments is still a challenge. Only recently has the single-particle coherent diffraction imaging (CDI), enabled by the ultrabright femtosecond free-electron laser pulses, provided breakthroughs in understanding mesoscopic morphology of nanoparticulate matter. Here, we report the first CDI results for Co@SiO2 core-shell nanoparticles randomly clustered in large airborne aggregates, obtained using the x-ray free-electron laser at the Linac Coherent Light Source. Our experimental results compare favourably with simulated diffraction patterns for clustered Co@SiO2 nanoparticles with similar to 10 nm core diameter and similar to 30 nm shell outer diameter, which confirms the ability to resolve the mesoscale morphology of complex metastable structures. The findings in this first morphological study of core-shell nanomaterials are a solid base for future time-resolved studies of dynamic phenomena in complex nanoparticulate matter using x-ray lasers.
  •  
2.
  • Loh, N. D., et al. (författare)
  • Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 486:7404, s. 513-517
  • Tidskriftsartikel (refereegranskat)abstract
    • The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology(1) to climate science(2), yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate(3); visible light scattering provides insufficient resolution(4); and X-ray synchrotron studies have been limited to ensembles of particles(5). Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source(6) free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins(7), vibrational energy transfer by the hydrodynamic interaction of amino acids(8), and large-scale production of nanoscale structures by flame synthesis(9).
  •  
3.
  • Barty, A., et al. (författare)
  • Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements
  • 2012
  • Ingår i: Nature Photonics. - 1749-4885 .- 1749-4893. ; 6:1, s. 35-40
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1, 2, 3, 4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.
  •  
4.
  • Duane Loh, N., et al. (författare)
  • Profiling structured beams using injected aerosols
  • 2012
  • Ingår i: Proceedings of SPIE. - : SPIE. - 9780819492210 ; , s. 850403-
  • Konferensbidrag (refereegranskat)abstract
    • Profiling structured beams produced by X-ray free-electron lasers (FELs) is crucial to both maximizing signal intensity for weakly scattering targets and interpreting their scattering patterns. Earlier ablative imprint studies describe how to infer the X-ray beam profile from the damage that an attenuated beam inflicts on a substrate. However, the beams in-situ profile is not directly accessible with imprint studies because the damage profile could be different from the actual beam profile. On the other hand, although a Shack-Hartmann sensor is capable of in-situ profiling, its lenses may be quickly damaged at the intense focus of hard X-ray FEL beams. We describe a new approach that probes the in-situ morphology of the intense FEL focus. By studying the translations in diffraction patterns from an ensemble of randomly injected sub-micron latex spheres, we were able to determine the non-Gaussian nature of the intense FEL beam at the Linac Coherent Light Source (SLAC National Laboratory) near the FEL focus. We discuss an experimental application of such a beam-profiling technique, and the limitations we need to overcome before it can be widely applied.
  •  
5.
  • Martin, A. V., et al. (författare)
  • Femtosecond dark-field imaging with an X-ray free electron laser
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:12, s. 13501-13512
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.
  •  
6.
  • Martin, A. V., et al. (författare)
  • Noise-robust coherent diffractive imaging with a single diffraction pattern
  • 2012
  • Ingår i: Optics Express. - 1094-4087. ; 20:15, s. 16650-16661
  • Tidskriftsartikel (refereegranskat)abstract
    • The resolution of single-shot coherent diffractive imaging at X-ray free-electron laser facilities is limited by the low signal-to-noise level of diffraction data at high scattering angles. The iterative reconstruction methods, which phase a continuous diffraction pattern to produce an image, must be able to extract information from these weak signals to obtain the best quality images. Here we show how to modify iterative reconstruction methods to improve tolerance to noise. The method is demonstrated with the hybrid input-output method on both simulated data and single-shot diffraction patterns taken at the Linac Coherent Light Source. (C) 2012 Optical Society of America
  •  
7.
  • Becker, J., et al. (författare)
  • High speed cameras for X-rays : AGIPD and others
  • 2013
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 8:1, s. Art. no. C01042-
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments at high pulse rate Free Electron Laser (FEL) facilities require new cameras capable of acquiring 2D images at high rates, handling large signal dynamic ranges and resolving images from individual pulses. The Adaptive Gain Integrated Pixel Detector (AGIPD) will operated with pulse rates and separations of 27000/s and 220 ns, respectively at European XFEL. Si-sensors, ASICs, PCBs, and FPGA logic are developed for a 1 Mega-pixel camera with 200 μm square pixels with per-pulse occupancies 104. Data from 3520 images/s will be transferred with 80 Gbits/s to a DAQ-system. The electronics have been adapted for use in other synchrotron light source detectors. 
  •  
8.
  • Allahgholi, A., et al. (författare)
  • AGIPD 1.0 : The high-speed high dynamic range readout ASIC for the adaptive gain integrating pixel detector at the European XFEL
  • 2014
  • Ingår i: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781479960972
  • Konferensbidrag (refereegranskat)abstract
    • AGIPD is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institute (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 104 × 12.4 keV photons, achieved by the use of dynamic gain switching, auto-selecting one of 3 gains of the charge sensitive pre-amplifier. To cope with the unique features of the European XFEL source, image data is stored in 352 analogue memory cells per pixel. The selected gain is stored in the same way and depth, encoded as one of 3 voltage levels. These memories are operated in random-access mode at 4.5MHz frame rate. Data is read out on a row-by-row basis via multiplexers to the DAQ system for digitisation during the 99.4ms gap between the bunch trains of the European XFEL. The AGIPD 1.0 ASIC features 64×64 pixels with a pixel area of 200×200 μm2. It is bump-bonded to a 500 μm thick silicon sensor. The principles of the chip architecture were proven in different experiments and the ASIC characterization was performed with a series of development prototypes. The mechanical concept of the detector system was developed in close contact with the XFEL beamline scientists to ensure a seamless integration into the beamline setup and is currently being manufactured. The first single module system was successfully tested at APS1 the high dynamic range allows imaging of the direct synchrotron beam along with single photon sensitivity and burst imaging of 352 subsequent frames synchronized to the source.
  •  
9.
  • Allahgholi, A., et al. (författare)
  • AGIPD, the electronics for a high speed X-ray imager at the Eu-XFEL
  • 2014
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • The AGIPD (Adaptive Gain Integrated Pixel Detector) X-ray imaging camera will be operated at the X-ray Free Electron Laser, Eu-XFEL, under construction in Hamburg, Germany. Key parameters are 1 million 200 μm square pixels, single 12.4 keV photon detection and a dynamic range to 10 000/pixel/image. The developed sensors, ASICs, PCB-electronics and FPGA firmware acquire individual images per bunch at 27 000 bunches/s, packed into 10 bunch-trains/s with a bunch separation of 222 ns. Bunch-trains are handled by 352 analogue storage cells within each pixel of the ASIC and written during the 0.6msec train delivery. Therefore AGIPD can store 3520 images/s from the delivered 27 000 bunches/s. Random addressing provides reusability of each cell after an image has been declared as low-quality, so that good images can be selected. Digitization is performed between trains (99.4 msec). In the paper all functional blocks are introduced. The details concentrate on the DAQ-chain PCB-electronics and the slow control. A dense area of 1024 ADC-channels, each with a pickup-noise filtering and sampling of up to 50 MS/s/ADC and a serial output of 700 Mbit/s/ADC. FPGAs operate the ASICs synchronized to the bunch structure and collect the bit streams from 64 ADCs/FPGA. Pre-sorted data is transmitted on 10 GbE links out of the camera head using the time between trains. The control and monitoring of the camera with 600 A current consumption is based on a micro-controller and I2C bus with an addressing architecture allowing many devices and identical modules. The high currents require planned return paths at the system level. First experimental experience with the constructed components will be presented.
  •  
10.
  • Becker, J., et al. (författare)
  • Architecture and design of the AGIPD detector for the European XFEL
  • 2012
  • Konferensbidrag (refereegranskat)abstract
    • AGIPD is a hybrid pixel detector developed by DESY, PSI, the University of Bonn and the University of Hamburg. The detector is targeted for use at the European XFEL, a source with unique properties: a bunch train of 2700 pulses with > 1012 photons of 12 keV each, only 100 fs long and with a 220 ns spacing, is repeated at a 10Hz rate. This puts up very demanding requirements: dynamic range has to cover the detection of single photons and extend up to > 104 photons/pixel in the same image, and as many images, as possible have to be recorded in the pixel to be read out between pulse trains. The high photon flux impinging on the detector also calls for a very radiation hard design of sensor and ASIC. The detector will consist of 16 Sensor modules arranged around a central hole for the direct beam. Each made of a single sensor bump-bonded to 2 × 8 readout chips of 64 × 64 pixels in a grid of 200 μm pitch. Each pixel of these ASICs contains a charge sensitive preamplifier featuring adaptive gain switching, changing sensitivity in three ranges, and a buffer to provide correlated double sampling (in the highest sensitivity mode). Most of the pixel area, albeit, is used for an analogue memory to record 352 frames. It is operated in random-access mode: data containing bad frames can be overwritten and the memory can be used in the most efficient way. The readout between two bunch trains is arranged via 4 ports: Data from pixels of one row is read in parallel and serialised by 4 multiplexers at the end of the pixel columns and driven off-chip as differential signals. The operation of the ASIC is controlled via a three-line serial interface, using a command based protocol. It is also used to configure the chip's operational parameters and internal timings. © 2012 IEEE.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy