SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grabherr Manfred) srt2:(2020-2023)"

Sökning: WFRF:(Grabherr Manfred) > (2020-2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Greve, Christian, et al. (författare)
  • Flexible Machine Learning Algorithms for Clinical Gait Assessment Tools
  • 2022
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 22:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The current gold standard of gait diagnostics is dependent on large, expensive motion-capture laboratories and highly trained clinical and technical staff. Wearable sensor systems combined with machine learning may help to improve the accessibility of objective gait assessments in a broad clinical context. However, current algorithms lack flexibility and require large training datasets with tedious manual labelling of data. The current study tests the validity of a novel machine learning algorithm for automated gait partitioning of laboratory-based and sensor-based gait data. The developed artificial intelligence tool was used in patients with a central neurological lesion and severe gait impairments. To build the novel algorithm, 2% and 3% of the entire dataset (567 and 368 steps in total, respectively) were required for assessments with laboratory equipment and inertial measurement units. The mean errors of machine learning-based gait partitions were 0.021 s for the laboratory-based datasets and 0.034 s for the sensor-based datasets. Combining reinforcement learning with a deep neural network allows significant reduction in the size of the training datasets to <5%. The low number of required training data provides end-users with a high degree of flexibility. Non-experts can easily adjust the developed algorithm and modify the training library depending on the measurement system and clinical population.
  •  
2.
  • Law, Simon R, et al. (författare)
  • Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon storage and cycling in boreal forests—the largest terrestrial carbon store—is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree–microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host–microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions. 
  •  
3.
  • Montoliu-Nerin, Merce, et al. (författare)
  • Building de novo reference genome assemblies of complex eukaryotic microorganisms from single nuclei
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of novel sequencing techniques has unraveled a tremendous diversity on Earth. Genomic data allow us to understand ecology and function of organisms that we would not otherwise know existed. However, major methodological challenges remain, in particular for multicellular organisms with large genomes. Arbuscular mycorrhizal (AM) fungi are important plant symbionts with cryptic and complex multicellular life cycles, thus representing a suitable model system for method development. Here, we report a novel method for large scale, unbiased nuclear sorting, sequencing, and de novo assembling of AM fungal genomes. After comparative analyses of three assembly workflows we discuss how sequence data from single nuclei can best be used for different downstream analyses such as phylogenomics and comparative genomics of single nuclei. Based on analysis of completeness, we conclude that comprehensive de novo genome assemblies can be produced from six to seven nuclei. The method is highly applicable for a broad range of taxa, and will greatly improve our ability to study multicellular eukaryotes with complex life cycles.
  •  
4.
  • Rivas-Carrillo, Salvador Daniel, et al. (författare)
  • MindReader : unsupervised electroencephalographic reader
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Electroencephalogram (EEG) interpretation plays a critical role in the clinical assessment of neurological conditions, including epilepsy. Manual analysis requires highly specialized and heavily trained personnel. Moreover, the rate of capturing abnormal events makes interpretation time-consuming, resource-hungry, and, overall, an expensive process.Automatic detection offers the potential to improve the quality of patient care by shortening the time to diagnosis, managing big data, and optimizing the allocation of human resources.Findings: We present MindReader, an unsupervised method for EEG signals. First, MindReader processes the signal through an autoencoder in order to detect EEG abnormalities. Next, patterns are hypothesized by a Hidden Markov Model. Our algorithm automatically generates labels for non-pathological phases, thus reducing the search space for trained personnel.Conclusions: MindReader is effective in detecting EEG abnormalities in focal and generalized epilepsy.
  •  
5.
  • Rivas-Carrillo, Salvador Daniel, et al. (författare)
  • MindReader : Unsupervised Classification of Electroencephalographic Data
  • 2023
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 23:6, s. 2971-
  • Tidskriftsartikel (refereegranskat)abstract
    • Electroencephalogram (EEG) interpretation plays a critical role in the clinical assessment of neurological conditions, most notably epilepsy. However, EEG recordings are typically analyzed manually by highly specialized and heavily trained personnel. Moreover, the low rate of capturing abnormal events during the procedure makes interpretation time-consuming, resource-hungry, and overall an expensive process. Automatic detection offers the potential to improve the quality of patient care by shortening the time to diagnosis, managing big data and optimizing the allocation of human resources towards precision medicine. Here, we present MindReader, a novel unsupervised machine-learning method comprised of the interplay between an autoencoder network, a hidden Markov model (HMM), and a generative component: after dividing the signal into overlapping frames and performing a fast Fourier transform, MindReader trains an autoencoder neural network for dimensionality reduction and compact representation of different frequency patterns for each frame. Next, we processed the temporal patterns using a HMM, while a third and generative component hypothesized and characterized the different phases that were then fed back to the HMM. MindReader then automatically generates labels that the physician can interpret as pathological and non-pathological phases, thus effectively reducing the search space for trained personnel. We evaluated MindReader's predictive performance on 686 recordings, encompassing more than 980 h from the publicly available Physionet database. Compared to manual annotations, MindReader identified 197 of 198 epileptic events (99.45%), and is, as such, a highly sensitive method, which is a prerequisite for clinical use.
  •  
6.
  • Rivas-Carrillo, Salvador Daniel (författare)
  • The revolutionary partnership of computation and biology
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The organization of living beings is complex. Science uses modeling in order to gain a deeper understanding, and to be able to manipulate the processes of living organisms. To this purpose, I used and developed computational tools to investigate and model different relevant biological phenomena. In paper I, I utilized whole-genome data from wild and domesticated European rabbit (Oryctolagus cuniculus sp.) populations to identify segregating insertions of endogenous retroviruses and compare their variation along the host phylogeny and domestication history. The results from this study highlight the importance of genomic modeling beyond reference organisms and reference individuals, and provide deep insights regarding strategies for variant analyses in host population comparative genomics. In paper IV, I studied the process of exaptation of foreign genetic elements at broad-scale by observing the presence and characteristics of retroviral env gene, syncytin, across vertebrates. I searched a library of more than 150 chromosome-length assemblies covering 17 taxonomical orders for syncytin homologs, where I identified and syntenically aligned over 300 loci insertions, including not previously known insertions. Additionally, three-dimensional structures of the recovered sequences were predicted using AlphaFold2. Phylogenomics analyses suggest a complex dynamic of multiple retroviral insertions at different time points with sequence conservation specific to clades that share a similar histo-physiological placental type.In paper II, I expanded the scope to encompass translational medicine by developing an unsupervised machine learning methodology for detecting anomalies in biomedical signals, MindReader, which I applied primarily to electroencephalogram. In paper III, I developed a hidden Markov model implementation that includes a hypothesis generator for stream time-domain signals, which is used as a dependency for paper II. The work in this thesis substantiates that a combination of biological knowledge, cutting-edge technology, and robust algorithmic design constitute the primordial factors for scientific advancement.
  •  
7.
  • Schneider, Andreas N., et al. (författare)
  • Comparative fungal community analyses using metatranscriptomics and internal transcribed spacer amplicon sequencing from Norway spruce
  • 2021
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius. IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities.
  •  
8.
  • Schneider, Andreas N., et al. (författare)
  • Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce
  • 2021
  • Ingår i: mSystems. - : American Society for Microbiology. - 2379-5077. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome. Few studies have considered how much of this structural and taxonomic information is included in transcriptomic data from matched samples. Here, we described fungal communities using both host-derived RNA-Seq and fungal ITS1 DNA amplicon sequencing to compare the outcomes between the methods. We used a panel of root and needle samples from the coniferous tree species Picea abies (Norway spruce) growing in untreated (nutrient-deficient) and nutrient-enriched plots at the Flakaliden forest research site in boreal northern Sweden. We show that the relationship between samples and alpha and beta diversity indicated by the fungal transcriptome is in agreement with that generated by the ITS data, while also identifying a lack of taxonomic overlap due to limitations imposed by current database coverage. Furthermore, we demonstrate how metatranscriptomics data additionally provide biologically informative functional insights. At the community level, there were changes in starch and sucrose metabolism, biosynthesis of amino acids, and pentose and glucuronate interconversions, while processing of organic macromolecules, including aromatic and heterocyclic compounds, was enriched in transcripts assigned to the genus Cortinarius.IMPORTANCE A deeper understanding of microbial communities associated with plants is revealing their importance for plant health and productivity. RNA extracted from plant field samples represents the host and other organisms present. Typically, gene expression studies focus on the plant component or, in a limited number of studies, expression in one or more associated organisms. However, metatranscriptomic data are rarely used for taxonomic profiling, which is currently performed using amplicon approaches. We created an assembly-based, reproducible, and hardware-agnostic workflow to taxonomically and functionally annotate fungal RNA-Seq data obtained from Norway spruce roots, which we compared to matching ITS amplicon sequencing data. While we identified some limitations and caveats, we show that functional, taxonomic, and compositional insights can all be obtained from RNA-Seq data. These findings highlight the potential of metatranscriptomics to advance our understanding of interaction, response, and effect between host plants and their associated microbial communities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy