SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Graff Caroline) srt2:(2010-2014)"

Sökning: WFRF:(Graff Caroline) > (2010-2014)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferrari, Raffaele, et al. (författare)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • Ingår i: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
2.
  • Bengtsson, Sara, 1978- (författare)
  • Stress steroids as accelerators of Alzheimer's disease. : Effects of chronically elevated levels of allopregnanolone in transgenic AD models.
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background Alzheimer’s disease (AD) and dementia are devastating con­ditions not only for the affected patients but also for their families.  The economical costs for the society are tremendous. Mid-life psychological stress, psychosocial stress and post-traumatic stress disorder cause cognitive dysfunction and lead to increased risk for dementia. However, the mecha­nisms behind stress-induced AD and dementia are not known. AD is char­acterized by solid amyloid plaques in the CNS. However, over the last decade it has been concluded that the levels of soluble beta-amyloid (Aβ) correlate to cognitive performance while plaques often do not. The soluble Aβ accu­mulate intracellularly and disturb the synaptic function. Interestingly, the levels of intracellular Aβ depend on neuronal activity. Previous studies have shown that decreased neuronal activity cause increased intracellular levels of Aβ and cognitive decline. Stress steroids produced in the brain, e.g. allopreg­nanolone, enhance the activity of the GABAergic system, i.e. the main in­hibitory system of the brain. Consequently, allopregnanolone affects neu­ronal activity. Therefore, it is possible that elevated levels of allopreg­nanolone (due to e.g. stress) cause increased intracellular levels of Aβ. This could be a mechanism behind stress-induced AD. The purpose of this thesis was to investigate if elevation of allopregnanolone is a possible link in the mechanism behind stress-induced AD by investigating the effects of chroni­cally elevated levels of allopregnanolone in transgenic mouse models for AD.Methods Swe/PS1 and Swe/Arc mice (transgenic models for AD) were treated chronically with elevated allopregnanolone levels, comparable to those at mild stress. After an interval of no treatment, the mice were tested for learning and memory performance in the Morris water maze. The brain tissue of the mice was then analyzed for disease markers, i.e. soluble and insoluble Aβ40 and Aβ42 using enzyme-linked immunosorbent assay, and amyloid plaques using immunohistochemistry and Congo red staining tech­nique. The brain tissue was also analyzed for a marker of synaptic function, i.e. synaptophysin.Results Chronic treatment of allopregnanolone caused impaired learning performance in both the Swe/PS1 and the Swe/Arc mouse models. The Swe/PS1 mice had increased levels of soluble Aβ in both hippocampus and cortex. Interestingly, the levels of soluble Aβ were unchanged in the Swe/Arc mice. Three months of allopregnanolone treatment in the Swe/PS1 mouse model caused decreased plaque size, predominantly in hippocampus. It may be concluded that chronic allopregnanolone elevation caused smaller but more abundant congophilic plaques as both total plaque area and number of plaques were increased in mice with poor learning ability. Additional spots for accumulation of Aβ, predominantly the more toxic Aβ42, and thus addi­tional starting points for plaque production could be a part of the mechanism behind stress-induced Alzheimer’s disease.Conclusions The conclusion of this thesis is that chronic elevation of allo­pregnanolon accelerated the development of Alzheimer’s disease in the Swe/PS1 and the Swe/Arc transgenic mouse models. Allopregnanolone may be an important link in the mechanism behind stress-induced AD. However, further studies are required to grasp the extent of its pathological influence.
  •  
3.
  • Chiang, Huei-Hsin, et al. (författare)
  • Novel TARDBP mutations in Nordic ALS patients
  • 2012
  • Ingår i: Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1434-5161 .- 1435-232X. ; 57:5, s. 316-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a neurodegenerative syndrome primarily affecting the upper and lower motor neurons. A characteristic neuropathological finding in ALS patients is neuronal inclusions positive for TAR DNA-binding protein 43 (TDP-43). Subsequently, mutations in the gene encoding TDP-43, TARDBP, proved to be involved in the development of ALS. We thus sequenced TARDBP in 177 Nordic ALS patients and found two previously reported (p.A90V and p.S379P) and two novel (p.G357R and p.R361T) missense variations in three familial ALS patients. The p.A90V and p.G357R variations were detected in the same patient and p.R361T was present in a family with both ALS and frontotemporal dementia-ALS. None of the missense variations were present in 200 neurologically healthy controls. However, p.A90V has also been reported in healthy individuals by others. Thus, the data suggest that these variations are rare and p.G357R, p.R361T and p.S379P are likely pathogenic but further functional characterization is needed to prove their pathogenicity. The mutation frequency in TARDBP in Nordic ALS patients was 1.7%. The ALS cohort was highly selected for a positive family history suggesting that mutations in TARDBP generally are a rare cause of ALS in Nordic countries.
  •  
4.
  • Couthouis, Julien, et al. (författare)
  • A yeast functional screen predicts new candidate ALS disease genes
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:52, s. 20881-20890
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of the segenes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having amore severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.
  •  
5.
  • Dehvari, Nodi, et al. (författare)
  • Amyloid precursor protein accumulates in aggresomes in response to proteasome inhibitor
  • 2012
  • Ingår i: Neurochemistry International. - : Elsevier BV. - 0197-0186 .- 1872-9754. ; 60:5, s. 533-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggresomes are cytoplasmic inclusions which are localized at the microtubule organizing center (MTOC) as a result of induced proteasome inhibition, stress or over-expression of certain proteins. Aggresomes are linked to the pathogenesis of many neurodegenerative diseases. Here we studied whether amyloid precursor protein (APP), a type-I transmembrane glycoprotein, is localized in aggresomes after exposure to stress condition. Using confocal microscopy we found that APP is located in aggresomes and co-localized with vimentin, gamma-tubulin, 20S and ubiquitin at the MTOC in response to proteasome dysfunction. An interaction between vimentin and APP was found after proteasome inhibition suggesting that APP is an additional protein constituent of aggresomes. Suppression of the proteasome system in APP-HEK293 cells overexpressing APP or transfected with APP Swedish mutation caused an accumulation of stable, detergent-insoluble forms of APP containing poly-ubiquitinated proteins. In addition, brain homogenates from transgenic mice expressing human APP with the Arctic mutation demonstrated an interaction between APP and the aggresomal-marker vimentin. These data suggest that malfunctioning of the proteasome system caused by mutation or overexpression of pathological or non-pathological proteins may lead to the accumulation of stable aggresomes, perhaps contributing to the neurodegeneration.
  •  
6.
  • Ekman, Sirkka-Liisa, et al. (författare)
  • Alzheimer
  • 2011
  • Rapport (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Escott-Price, Valentina, et al. (författare)
  • Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:6, s. e94661-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10(-6)) and 14 (IGHV1-67 p = 7.9x10(-8)) which indexed novel susceptibility loci. Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
  •  
8.
  • Ferencz, Beata, et al. (författare)
  • The Benefits of Staying Active in Old Age : Physical Activity Counteracts the Negative Influence of PICALM, BIN1, and CLU Risk Alleles on Episodic Memory Functioning
  • 2014
  • Ingår i: Psychology and Aging. - : American Psychological Association (APA). - 0882-7974 .- 1939-1498. ; 29:2, s. 440-449
  • Tidskriftsartikel (refereegranskat)abstract
    • PICALM, BIN1, CLU, and APOE are top candidate genes for Alzheimer's disease, and they influence episodic memory performance in old age. Physical activity, however, has been shown to protect against age-related decline and counteract genetic influences on cognition. The aims of this study were to assess whether (a) a genetic risk constellation of PICALM, BIN1, and CLU polymorphisms influences cognitive performance in old age; and (b) if physical activity moderates this effect. Data from the SNAC-K population-based study were used, including 2,480 individuals (age range = 60 to 100 years) free of dementia at baseline and at 3- to 6-year follow-ups. Tasks assessing episodic memory, perceptual speed, knowledge, and verbal fluency were administered. Physical activity was measured using self-reports. Individuals who had engaged in frequent health-or fitness-enhancing activities within the past year were compared with those who were inactive. Genetic risk scores were computed based on an integration of risk alleles for PICALM (rs3851179 G allele, rs541458 T allele), BIN1 (rs744373 G allele), and CLU (rs11136000 T allele). High genetic risk was associated with reduced episodic memory performance, controlling for age, education, vascular risk factors, chronic diseases, activities of daily living, and APOE gene status. Critically, physical activity attenuated the effects of genetic risk on episodic memory. Our findings suggest that participants with high genetic risk who maintain a physically active lifestyle show selective benefits in episodic memory performance.
  •  
9.
  • Ferencz, Beata, et al. (författare)
  • The influence of APOE and TOMM40 polymorphisms on hippocampal volume and episodic memory in old age
  • 2013
  • Ingår i: Frontiers in Human Neuroscience. - : Frontiers Media SA. - 1662-5161. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial dysfunction is implicated in neurodegenerative disorders, such as Alzheimer's disease (AD). Translocase of outer mitochondrial membrane 40 (TOMM40) may be influential in this regard by influencing mitochondrial neurotoxicity. Little is known about the influence of the TOMM40 gene on hippocampal (HC) volume and episodic memory (EM), particularly in healthy older adults. Thus, we sought to discern the influence of TOMM40 single nucleotide polymorphisms (SNPs), which have previously been associated with medial temporal lobe integrity (rs11556505 and rs2075650), on HC volume and EM. The study sample consisted of individuals from the Swedish National Study on Aging and Care in Kungsholmen (SNAC-K) who were free of dementia and known neurological disorders, and 6087 years of age (n = 424). EM was measured by using a 16-item word list with a 2-min free recall period and delineation of the HC was performed manually. The influence of Apolipoprotein E (APOE) and TOMM40 was assessed by 2 x 2 ANOVAs and partial correlations. There was no effect of APOE and TOMM40 on EM performance and HC volume. However, partial correlations revealed that HC volume was positively associated with free recall performance (r = 0.21, p < 0.01, r(2) = 0.04). When further stratified for TOMM40, the observed association between HC volume and free recall in APOE epsilon 4 carriers was present in combination with TOMM40 rs11556505 any T (r = 0.28, p < 0.01, R-2 = 0.08) and rs2075650 any G (r = 0.28, p < 0.01, R-2 = 0.08) risk alleles. This pattern might reflect higher reliance on HC volume for adequate EM performance among APOE epsilon 4 carriers with additional TOMM40 risk alleles suggesting that the TOMM40 gene cannot merely be considered a marker of APOE genotype. Nevertheless, neither APOE nor TOMM40 influenced HC volume or EM in this population-based sample of cognitively intact individuals over the age of 60.
  •  
10.
  • Forsell, Charlotte, et al. (författare)
  • Genetic association to the amyloid plaque associated protein gene COL25A1 in Alzheimer's disease
  • 2010
  • Ingår i: Neurobiology of Aging. - Fayetteville, N.Y. : Ankho International. - 0197-4580 .- 1558-1497. ; 31:3, s. 409-415
  • Tidskriftsartikel (refereegranskat)abstract
    • The COL25A1 gene, located in 4q25, encodes the CLAC protein, which has been implicated in Alzheimer's disease (AD) pathogenesis. CLAC was originally identified in amyloid preparations from AD brain and has been shown to be associated with amyloid plaques, inhibition of Abeta-fibril elongation and increased protease resistance of Abeta-fibrils through direct binding to Abeta. These biochemical data as well as the genomic location of the COL25A1 gene in chromosome 4q25 where we previously have reported a weak linkage-signal in Swedish AD families encouraged us to perform a case-control association study of two LD blocks in COL25A1 using 817 AD cases and 364 controls. The LD blocks cover a putative Abeta-binding motif and the variable 3' end of the gene. The analyses indicated association to three of eight analysed SNPs. We found further support for the association by replication in a Swedish population-based longitudinal sample set (n=926). Thus, in addition to the biochemical data, there is now genetic evidence of association between COL25A1 and risk for Alzheimer's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (27)
rapport (1)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Graff, Caroline (28)
Fratiglioni, Laura (9)
Winblad, Bengt (9)
Pinho, Catarina More ... (4)
Glaser, Elzbieta (4)
Lilius, Lena (4)
visa fler...
Wahlund, Lars-Olof (3)
Bäckman, Lars (3)
Ankarcrona, Maria (3)
Laukka, Erika J. (3)
Behbahani, Homira (3)
Lövdén, Martin (3)
Almkvist, Ove (2)
Boada, Mercè (2)
Tsolaki, Magda (2)
Pasquier, Florence (2)
Andersen, Peter M. (2)
Lannfelt, Lars (2)
Odeberg, Jacob (2)
Långström, Bengt (2)
Scheltens, Philip (2)
Soininen, Hilkka (2)
Van Broeckhoven, Chr ... (2)
Rademakers, Rosa (2)
Fox, Nick C (2)
Lleó, Alberto (2)
Clarimon, Jordi (2)
Cruchaga, Carlos (2)
Hardy, John (2)
Welander, Hedvig (2)
Nordberg, Agneta (2)
Axelman, Karin (2)
Andrade, Jorge (2)
Trojanowski, John Q (2)
Wall, Anders (2)
Nalls, Michael A. (2)
Sillén, Anna (2)
Westerlund, Marie (2)
Galter, Dagmar (2)
Galimberti, Daniela (2)
Razquin, Cristina (2)
Pastor, Pau (2)
Hampel, Harald (2)
Kalpouzos, Grégoria (2)
Wang, Hui-Xin (2)
Rogaeva, Ekaterina (2)
St George-Hyslop, Pe ... (2)
Graff-Radford, Neill ... (2)
Dickson, Dennis W (2)
Sorbi, Sandro (2)
visa färre...
Lärosäte
Karolinska Institutet (25)
Stockholms universitet (17)
Lunds universitet (6)
Uppsala universitet (5)
Umeå universitet (3)
Kungliga Tekniska Högskolan (2)
visa fler...
Göteborgs universitet (1)
Högskolan Kristianstad (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (29)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Naturvetenskap (6)
Samhällsvetenskap (4)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy