SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grander D) srt2:(2010-2014)"

Sökning: WFRF:(Grander D) > (2010-2014)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cepeda, D., et al. (författare)
  • CDK-mediated activation of the SCFFBXO28 ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer
  • 2013
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 5:7, s. 999-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCFFBXO28 activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCFFBXO28 plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer. FBXO28 is identified as part of a SCF complex acting as a regulator of tumor cell proliferation and an important modifier of MYC function. FBXO28 may be a new prognostic factor in breast cancer and a new potential drug target in MYC- driven tumors.
  •  
2.
  • Arabi, A., et al. (författare)
  • Proteomic screen reveals Fbw7 as a modulator of the NF-kappa B pathway
  • 2012
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 3, s. 976-
  • Tidskriftsartikel (refereegranskat)abstract
    • Fbw7 is a ubiquitin-ligase that targets several oncoproteins for proteolysis, but the full range of Fbw7 substrates is not known. Here we show that by performing quantitative proteomics combined with degron motif searches, we effectively screened for a more complete set of Fbw7 targets. We identify 89 putative Fbw7 substrates, including several disease-associated proteins. The transcription factor NF-κB2 (p100/p52) is one of the candidate Fbw7 substrates. We show that Fbw7 interacts with p100 via a conserved degron and that it promotes degradation of p100 in a GSK3 2 phosphorylation-dependent manner. Fbw7 inactivation increases p100 levels, which in the presence of NF-κB pathway stimuli, leads to increased p52 levels and activity. Accordingly, the apoptotic threshold can be increased by loss of Fbw7 in a p100-dependent manner. In conclusion, Fbw7-mediated destruction of p100 is a regulatory component restricting the response to NF-κB2 pathway stimulation.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Buentke, E, et al. (författare)
  • Glucocorticoid-induced cell death is mediated through reduced glucose metabolism in lymphoid leukemia cells
  • 2011
  • Ingår i: Blood Cancer Journal. - : Macmillan Publishers Limited. - 2044-5385. ; 1:e31, s. 9-
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant cells are known to have increased glucose uptake and accelerated glucose metabolism. Using liquid chromatography and mass spectrometry, we found that treatment of acute lymphoblastic leukemia (ALL) cells with the glucocorticoid (GC) dexamethasone (Dex) resulted in profound inhibition of glycolysis. We thus demonstrate that Dex reduced glucose consumption, glucose utilization and glucose uptake by leukemic cells. Furthermore, Dex treatment decreased the levels of the plasma membrane-associated glucose transporter GLUT1, thus revealing the mechanism for the inhibition of glucose uptake. Inhibition of glucose uptake correlated with induction of cell death in ALL cell lines and in leukemic blasts from ALL patients cultured ex vivo. Addition of di-methyl succinate could partially overcome cell death induced by Dex in RS4;11 cells, thereby further supporting the notion that inhibition of glycolysis contributes to the induction of apoptosis. Finally, Dex killed RS4;11 cells significantly more efficiently when cultured in lower glucose concentrations suggesting that modulation of glucose levels might influence the effectiveness of GC treatment in ALL. In summary, our data show that GC treatment blocks glucose uptake by leukemic cells leading to inhibition of glycolysis and that these effects play an important role in the induction of cell death by these drugs.
  •  
8.
  •  
9.
  •  
10.
  • Grander, D, et al. (författare)
  • Autophagy: cancer therapy's friend or foe?
  • 2010
  • Ingår i: Future medicinal chemistry. - : Future Science Ltd. - 1756-8927 .- 1756-8919. ; 2:2, s. 285-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Autophagy is a physiological process that is activated not only in response to stress (e.g., degradation of damaged organelles or nutrient starvation) but also during carcinogenesis and tumor progression. Furthermore, a number of commonly used anticancer drugs activate the autophagic program, a response that, in most cases, suppresses the cytotoxic effects of the drugs, where in some other cases, autophagy promotes drug-induced cell death. Significant progress has been made on delineating the signaling cascades activated during autophagy. A number of known or candidate tumor-suppressor genes that are involved in autophagy have been shown to be activated or inactivated in various cancer types. These genetic perturbations do not only affect carcinogenesis but also the responses of the cancer cells to treatment. The current state-of-the-art with respect to the genes regulating autophagy and the importance of autophagy in the cytotoxic response of cancer treatments will be discussed in this review.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy