SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grunewald M. W.) srt2:(2020-2022)"

Sökning: WFRF:(Grunewald M. W.) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Le Duc, D., et al. (författare)
  • Genomic basis for skin phenotype and cold adaptation in the extinct Steller's sea cow
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Steller's sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller's descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller's sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller's sea cows' reportedly bark-like skin. We also found that Steller's sea cows' abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction. 
  •  
2.
  • Berthold, R., et al. (författare)
  • Fusion protein-driven IGF-IR/PI3K/AKT signals deregulate Hippo pathway promoting oncogenic cooperation of YAP1 and FUS-DDIT3 in myxoid liposarcoma
  • 2022
  • Ingår i: Oncogenesis. - : Springer Science and Business Media LLC. - 2157-9024. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Myxoid liposarcoma (MLS) represents a common subtype of liposarcoma molecularly characterized by a recurrent chromosomal translocation that generates a chimeric FUS-DDIT3 fusion gene. The FUS-DDIT3 oncoprotein has been shown to be crucial in MLS pathogenesis. Acting as a transcriptional dysregulator, FUS-DDIT3 stimulates proliferation and interferes with adipogenic differentiation. As the fusion protein represents a therapeutically challenging target, a profound understanding of MLS biology is elementary to uncover FUS-DDIT3-dependent molecular vulnerabilities. Recently, a specific reliance on the Hippo pathway effector and transcriptional co-regulator YAP1 was detected in MLS; however, details on the molecular mechanism of FUS-DDIT3-dependent YAP1 activation, and YAP1 ' s precise mode of action remain unclear. In elaborate in vitro studies, employing RNA interference-based approaches, small-molecule inhibitors, and stimulation experiments with IGF-II, we show that FUS-DDIT3-driven IGF-IR/PI3K/AKT signaling promotes stability and nuclear accumulation of YAP1 via deregulation of the Hippo pathway. Co-immunoprecipitation and proximity ligation assays revealed nuclear co-localization of FUS-DDIT3 and YAP1/TEAD in FUS-DDIT3-expressing mesenchymal stem cells and MLS cell lines. Transcriptome sequencing of MLS cells demonstrated that FUS-DDIT3 and YAP1 co-regulate oncogenic gene signatures related to proliferation, cell cycle progression, apoptosis, and adipogenesis. In adipogenic differentiation assays, we show that YAP1 critically contributes to FUS-DDIT3-mediated adipogenic differentiation arrest. Taken together, our study provides mechanistic insights into a complex FUS-DDIT3-driven network involving IGF-IR/PI3K/AKT signals acting on Hippo/YAP1, and uncovers substantial cooperative effects of YAP1 and FUS-DDIT3 in the pathogenesis of MLS.
  •  
3.
  • Meisl, Christina J., et al. (författare)
  • Nomograms including the UBC (R) Rapid test to detect primary bladder cancer based on a multicentre dataset
  • 2022
  • Ingår i: BJU International. - : John Wiley & Sons. - 1464-4096 .- 1464-410X. ; 130:6, s. 754-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives To evaluate the clinical utility of the urinary bladder cancer antigen test UBC (R) Rapid for the diagnosis of bladder cancer (BC) and to develop and validate nomograms to identify patients at high risk of primary BC. Patients and Methods Data from 1787 patients from 13 participating centres, who were tested between 2012 and 2020, including 763 patients with BC, were analysed. Urine samples were analysed with the UBC (R) Rapid test. The nomograms were developed using data from 320 patients and externally validated using data from 274 patients. The diagnostic accuracy of the UBC (R) Rapid test was evaluated using receiver-operating characteristic curve analysis. Brier scores and calibration curves were chosen for the validation. Biopsy-proven BC was predicted using multivariate logistic regression. Results The sensitivity, specificity, and area under the curve for the UBC (R) Rapid test were 46.4%, 75.5% and 0.61 (95% confidence interval [CI] 0.58-0.64) for low-grade (LG) BC, and 70.5%, 75.5% and 0.73 (95% CI 0.70-0.76) for high-grade (HG) BC, respectively. Age, UBC (R) Rapid test results, smoking status and haematuria were identified as independent predictors of primary BC. After external validation, nomograms based on these predictors resulted in areas under the curve of 0.79 (95% CI 0.72-0.87) and 0.95 (95% CI: 0.92-0.98) for predicting LG-BC and HG-BC, respectively, showing excellent calibration associated with a higher net benefit than the UBC (R) Rapid test alone for low and medium risk levels in decision curve analysis. The R Shiny app allows the results to be explored interactively and can be accessed at www.blucab-index. net. Conclusion The UBC (R) Rapid test alone has limited clinical utility for predicting the presence of BC. However, its combined use with BC risk factors including age, smoking status and haematuria provides a fast, highly accurate and non-invasive tool for screening patients for primary LG-BC and especially primary HG-BC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy