SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guenther T) srt2:(2020-2023)"

Sökning: WFRF:(Guenther T) > (2020-2023)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbasi, R., et al. (författare)
  • A Search for IceCube Sub-TeV Neutrinos Correlated with Gravitational-wave Events Detected By LIGO/Virgo
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test.
  •  
2.
  • Abbasi, R., et al. (författare)
  • Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 946:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A-the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV-provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source.
  •  
3.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
4.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
5.
  • Luque, R., et al. (författare)
  • Precise mass determination for the keystone sub-Neptune planet transiting the mid-type M dwarf G 9-40
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Despite being a prominent subset of the exoplanet population discovered in the past three decades, the nature and provenance of sub-Neptune-sized planets is still one of the open questions in exoplanet science. Aims. For planets orbiting bright stars, precisely measuring the orbital and planet parameters of the system is the best approach to distinguish between competing theories regarding their formation and evolution. Methods. We obtained 69 new radial velocity observations of the mid-M dwarf G 9-40 with the CARMENES instrument to measure for the first time the mass of its transiting sub-Neptune planet, G 9-40 b, discovered in data from the K2 mission. Results. Combined with new observations from the TESS mission during Sectors 44, 45, and 46, we are able to measure the radius of the planet to an uncertainty of 3.4% (R-b = 1.900 +/- 0.065 R-circle plus) and determine its mass with a precision of 16% (M-b = 4.00 +/- 0.63 M-circle plus). The resulting bulk density of the planet is inconsistent with a terrestrial composition and suggests the presence of either a water-rich core or a significant hydrogen-rich envelope. Conclusions. G 9-40 b is referred to as a keystone planet due to its location in period-radius space within the radius valley. Several theories offer explanations for the origin and properties of this population and this planet is a valuable target for testing the dependence of those models on stellar host mass. By virtue of its brightness and small size of the host, it joins L 98-59 d as one of the two best warm (T-eq similar to 400 K) sub-Neptunes for atmospheric characterization with JWST, which will probe cloud formation in sub-Neptune-sized planets and break the degeneracies of internal composition models.
  •  
6.
  • Cabrera, J., et al. (författare)
  • The planetary system around HD 190622 (TOI-1054): Measuring the gas content of low-mass planets orbiting F-stars
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Giant planets are known to dominate the long-term stability of planetary systems due to their prevailing gravitational interactions, but they are also thought to play an important role in planet formation. Observational constraints improve our understanding of planetary formation processes such as the delivery of volatile-rich planetesimals from beyond the ice line into the inner planetary system. Additional constraints may come from studies of the atmosphere, but almost all such studies of the atmosphere investigate the detection of certain species, and abundances are not routinely quantitatively measured. Aims. Accurate measurements of planetary bulk parameters-that is, mass and density-provide constraints on the inner structure and chemical composition of transiting planets. This information provides insight into properties such as the amounts of volatile species, which in turn can be related to formation and evolution processes. Methods. The Transiting Exoplanet Survey Satellite (TESS) reported a planetary candidate around HD 190622 (TOI-1054), which was subsequently validated and found to merit further characterization with photometric and spectroscopic facilities. The KESPRINT collaboration used data from the High Accuracy Radial Velocity Planet Searcher (HARPS) to independently confirm the planetary candidate, securing its mass, and revealing the presence of an outer giant planet in the system. The CHEOPS consortium invested telescope time in the transiting target in order to reduce the uncertainty on the radius, improving the characterization of the planet. Results. We present the discovery and characterization of the planetary system around HD 190622 (TOI-1054). This system hosts one transiting planet, which is smaller than Neptune (3.087-0.053+0.058REarth, 7.7 ± 1.0 MEarth) but has a similar bulk density (1.43 ± 0.21 g cm-3) and an orbital period of 16 days; and a giant planet, not known to be transiting, with a minimum mass of 227.0 ± 6.7 MEarth in an orbit with a period of 315 days. Conclusions. Our measurements constrain the structure and composition of the transiting planet. HD 190622b has singular properties among the known population of transiting planets, which we discuss in detail. Among the sub-Neptune-sized planets known today, this planet stands out because of its large gas content.
  •  
7.
  • Joubert, M., et al. (författare)
  • 'Pandem-icons' - exploring the characteristics of highly visible scientists during the Covid-19 pandemic
  • 2023
  • Ingår i: Jcom-Journal of Science Communication. - : Sissa Medialab Srl. - 1824-2049. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Covid-19 pandemic escalated demand for scientific explanations and guidance, creating opportunities for scientists to become publicly visible. In this study, we compared characteristics of visible scientists during the first year of the Covid-19 pandemic (January to December 2020) across 16 countries. We find that the scientists who became visible largely matched socio-cultural criteria that have characterised visible scientists in the past (e.g., age, gender, credibility, public image, involvement in controversies). However, there were limited tendencies that scientists commented outside their areas of expertise. We conclude that the unusual circumstances created by Covid-19 did not change the phenomenon of visible scientists in significant ways.
  •  
8.
  • Van Eylen, Vincent, et al. (författare)
  • Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:2, s. 2154-2173
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M = 0.39 M, R = 0.38 R), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the 'radius valley'-a region in the radius-period diagram with relatively few members-which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
  •  
9.
  • Bordé, P., et al. (författare)
  • Transiting exoplanets from the CoRoT space mission: XXIX. The hot Jupiters CoRoT-30 b and CoRoT-31 b
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery as well as the orbital and physical characterizations of two new transiting giant exoplanets, CoRoT-30 b and CoRoT-31 b, with the CoRoT space telescope. Methods. We analyzed two complementary data sets: photometric transit light curves measured by CoRoT, and radial velocity curves measured by the HARPS spectrometer. To derive the absolute masses and radii of the planets, we modeled the stars from available magnitudes and spectra. Results. We find that CoRoT-30 b is a warm Jupiter on a close-to-circular 9.06-day orbit around a G3V star with a semi-major axis of about 0.08 AU. It has a radius of 1.01 ± 0.08 RJ, a mass of 2.90 ± 0.22 MJ, and therefore a mean density of 3.45 ± 0.65 g cm-3. The hot Jupiter CoRoT-31 b is on a close-to-circular 4.63-day orbit around a G2 IV star with a semi-major axis of about 0.05 AU. It has a radius of 1.46 ± 0.30 RJ, a mass of 0.84 ± 0.34 MJ, and therefore a mean density of 0.33 ± 0.18 g cm-3. Conclusions. Neither system seems to support the claim that stars hosting planets are more depleted in lithium. The radii of both planets are close to that of Jupiter, but they differ in mass; CoRoT-30 b is ten times denser than CoRoT-31 b. The core of CoRoT-30 b would weigh between 15 and 75 Earth masses, whereas relatively weak constraints favor no core for CoRoT-31 b. In terms of evolution, the characteristics of CoRoT-31 b appear to be compatible with the high-eccentricity migration scenario, which is not the case for CoRoT-30 b. The angular momentum of CoRoT-31 b is currently too low for the planet to evolve toward synchronization of its orbital revolution with stellar rotation, and the planet will slowly spiral-in while its host star becomes a red giant. CoRoT-30 b is not synchronized either: it looses angular momentum owing to stellar winds and is expected reach steady state in about 2 Gyr. CoRoT-30 and 31, as a pair, are a truly remarkable example of diversity in systems with hot Jupiters.
  •  
10.
  • Chaturvedi, P., et al. (författare)
  • TOI-1468: A system of two transiting planets, a super-Earth and a mini-Neptune, on opposite sides of the radius valley
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b (P-b = 1.88 d), has a planetary mass of M-b = 3.21 +/- 0.24M(circle plus) and a radius of R-b = 1.280(-0.039)(+0.038) R-circle plus, resulting in a density of rho(b) = 8.39(-0.92)(+1.05) g cm(-3), which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c (P-c = 15.53 d), we derive a mass of M-c = 6.64(-0.68)(+0.67) M-circle plus,aradius of R-c = 2.06 +/- 0.04 R-circle plus, and a bulk density of rho(c) = 2.00(-0.19)(+0.21) g cm(-3), which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (29)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (30)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Gandolfi, D. (12)
Luque, R. (12)
Fridlund, Malcolm, 1 ... (11)
Redfield, S. (11)
Guenther, E. W. (11)
Csizmadia, Szilard (10)
visa fler...
Lam, K. W.F. (10)
Persson, Carina, 196 ... (10)
Grziwa, S. (10)
Winn, J. N. (10)
Barragán, O. (9)
Van Eylen, Vincent (9)
Seager, S. (9)
Serrano, L. M. (9)
Esposito, M. (8)
Hirano, T (8)
Latham, D. W. (8)
Goffo, E. (8)
Nowak, G. (7)
Knudstrup, E. (7)
Cabrera, J (7)
Dai, Fei (7)
Livingston, J.H. (7)
Cochran, William D. (7)
Hatzes, A. (7)
Palle, E. (7)
Murgas, F. (7)
Georgieva, Iskra, 19 ... (7)
Twicken, J. D. (7)
Osborne, H. L. M. (7)
Palle, Enric (6)
Rauer, H. (6)
Smith, Alexis M. S. (6)
Korth, Judith, 1987 (6)
Ribas, I. (5)
Cochran, W. D. (5)
Narita, Norio (5)
Albrecht, Simon (5)
Deeg, H. (5)
Rodler, F. (5)
Quirrenbach, A. (4)
Fukui, A. (4)
Erikson, Anders (4)
Barros, S.C.C. (4)
Bonfils, X. (4)
Santos, N. C. (4)
Udry, S. (4)
Mathur, S (4)
Korth, Judith (4)
Parviainen, H. (4)
visa färre...
Lärosäte
Chalmers tekniska högskola (18)
Lunds universitet (7)
Karolinska Institutet (7)
Stockholms universitet (6)
Uppsala universitet (4)
Göteborgs universitet (2)
visa fler...
Luleå tekniska universitet (2)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
Linköpings universitet (1)
Karlstads universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Medicin och hälsovetenskap (3)
Teknik (2)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy