SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Gueret Robin)
 

Search: WFRF:(Gueret Robin) > (2023) > Lignin–Chitosan Gel...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Lignin–Chitosan Gel Polymer Electrolytes for Stable Zn Electrodeposition

Almenara Perez, Naroa (author)
Stockholms universitet,Institutionen för material- och miljökemi (MMK)
Gueret, Robin (author)
Stockholms universitet,Institutionen för material- och miljökemi (MMK)
Huertas-Alonso, Alberto José, 1988- (author)
Stockholms universitet,Institutionen för material- och miljökemi (MMK)
show more...
Thalakkale Veettil, Unnimaya, 1998- (author)
Stockholms universitet,Institutionen för material- och miljökemi (MMK)
Sipponen, Mika H. (author)
Stockholms universitet,Institutionen för material- och miljökemi (MMK)
Lizundia, Erlantz (author)
show less...
 (creator_code:org_t)
2023-01-30
2023
English.
In: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 11:6, s. 2283-2294
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Electrochemical energy storage technologies offer means to transition toward a decarbonized society and carbon neutrality by 2050. Compared to conventional lithium-ion batteries, aqueous zinc-ion chemistries do not require scarce materials or toxic and flammable organic-based electrolytes to function, making them favorable contenders in the scenario of intensifying climate change and supply chain crisis. However, environmentally benign and bio-based materials are needed to substitute fossil-based battery materials. Accordingly, this work taps into the possibilities of lignin together with chitosan to form gel polymer electrolytes (GPEs) for zinc-ion chemistries. A simple fabrication process enabling free-standing sodium lignosulfonate–chitosan and micellar lignosulfonate–kraft lignin–chitosan GPEs with diameters exceeding 80 mm is developed. The GPEs combine tensile strength with ductility, reaching Young’s moduli of 55 ± 4 to 940 ± 63 MPa and elongations at break of 14.1 ± 0.2 to 43.9 ± 21.1%. Competitive ionic conductivities ranging from 3.8 to 18.6 mS cm–1 and electrochemical stability windows of up to +2.2 V vs Zn2+/Zn were observed. Given the improved interfacial adhesion of the GPEs with metallic Zn promoted by the anionic groups of the lignosulfonate, a stable cycling of the Zn anode is obtained. As a result, GPEs can operate at 5000 μA cm–2 with no short-circuit and Coulombic efficiencies above 99.7%, outperforming conventional separator–liquid electrolyte configurations such as the glass microfiber separator soaked into 2 M ZnSO4 aqueous electrolyte, which short-circuits after 100 μA cm–2. This work demonstrates the potential of underutilized biorefinery side-streams and marine waste as electrolytes in the battery field, opening new alternatives in the sustainable energy storage landscape beyond LIBs.

Subject headings

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Keyword

lignin
chitosan
bioeconomy
circular economy
gel polymer electrolyte
zinc-ion battery (ZIB)
zinc plating/stripping

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view