SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gumbel Jörg) srt2:(2020-2024)"

Sökning: WFRF:(Gumbel Jörg) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broman, Lina, 1981-, et al. (författare)
  • Case study of a large mesospheric front in polar mesospheric clouds
  • 2022
  • Ingår i: Tellus. Series A, Dynamic meteorology and oceanography. - : Stockholm University Press. - 0280-6495 .- 1600-0870. ; 74:1, s. 85-105
  • Tidskriftsartikel (refereegranskat)abstract
    • A large mesospheric front structure was observed on 16 July 2010 in Polar Mesospheric Clouds using common volume observations performed by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument and the Odin Optical Spectrograph and Infrared Imager System (OSIRIS) at ∼ 75◦ N, 144◦ E. During the 4.5 hours long observation time, the front structure manifested in the PMC layer as an ice free elongated structure with sharp edges to the surrounding cloud field. A propagation direction from Southeast to Northwest and simultaneous clockwise rotation of 12 deg/hour is observed and the horizontal extent of the structure is found to be about 1800 km long and 190 km wide. Common volume observations of the mesospheric environment in terms of temperatures and water vapor provided by the Odin Sub-Millimetre Radiometer (SMR) indicate an extensive elevated warm air mass during the occurrence of the front structure and colder temperatures at the sharp front edge. The presence of a wave structure with λz ∼ 6 km at an altitude of 70-90 km coincides with a sharpening of the front edge. We compare the general characteristics of the current mesospheric front to earlier reports on mesospheric fronts based on ground-based and space-borne airglow and PMC observations. 
  •  
2.
  • Broman, Lina, 1981- (författare)
  • Multi-satellite views on mesospheric microphysics and dynamics
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Atmospheric gravity waves of different scales and origins strongly modulate the wind field and temperature structure of the higher parts of the atmosphere. Direct and continuous measurements of these processes are particularly complicated in the mesosphere at about 50 to 100 km height due to the remote location of this region. Polar mesospheric clouds (PMCs) that form in the summertime between 80 and 90 km over the polar regions are highly sensitive to changes in the background atmosphere, and in particular to waves. This makes them an ideal tracer for atmospheric conditions and wave activity. However, in order to use them as a tracer, we need to better understand the influence of waves on the clouds on a local scale.In this thesis, tomographic measurements from the limb viewing OSIRIS spectrograph on the Swedish Odin satellite are used to study 2D structures of PMCs. The aim is to improve our understanding of the clouds’ life cycle and of their interactions with waves and dynamics on different scales. First, a method is developed that combines the tomographic PMC measurements from the OSIRIS instrument with simultaneous measurements from the downward viewing CIPS instrument on NASA’s AIM satellite. The method allows studies of clouds in a common observational volume with a combined high vertical and horizontal resolution of cloud structures. Measurements of cloud brightness and ice content from the two instruments agree very well, and it is demonstrated that the combined dataset is well suited for studies of cloud structures and cloud microphysics. The combined dataset is further investigated to study assumptions on the particle size distribution of PMCs. We find that the commonly used Gaussian assumption cannot simultaneously describe the size distribution as seen by a column-integrating instrument (CIPS) and by a limb-integrating instrument (OSIRIS). Instead, we show that the particle population seen by a limb-integrating instrument is better represented by a broad lognormal distribution. In an atmospheric case study, the combined PMC dataset is used together  with simultaneous temperature and water vapor measurements from the SMR instrument on Odin to study a special event of a mesospheric front structure. We characterize the temporal and structural development of the front as seen by both satellites and discuss possible generating mechanisms.Finally, we extend OSIRIS’ tomographic view to the southern hemisphere. The structure and dynamics of the atmosphere are not symmetric, but hemispheric differences in Earth’s topography cause differences in wind systems at all atmospheric altitudes. We therefore apply the tomographic approach to study differences between the northern and southern hemispheres in PMC morphology and microphysics.  
  •  
3.
  • Broman, Lina, 1981-, et al. (författare)
  • New insights on polar mesospheric cloud particle size distributions from a two-satellite common volume study
  • 2021
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 219
  • Tidskriftsartikel (refereegranskat)abstract
    • The particle size distribution of Polar Mesospheric Clouds (PMC) is closely related to the fundamental processes of cloud formation and evolution. Still, despite substantial observational efforts, specific details about the particle size distribution have remained obscure. In this study, we aim at deriving more constraints on PMC size dis­tributions by combining optical measurements from two satellite instruments observing a common PMC volume. We use a special set of 2D tomographic limb observations from the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite from 2010 to 2011 in the latitude range 78◦ N to 80◦ N and compare these to simultaneous PMC observations from the nadir-viewing Cloud Imaging and Particle Size (CIPS) instrument on the AIM satellite. A key goal is to find the assumption on the mathematical shape of the particle size distribution that should be applied to a vertically resolving limb-viewing instrument to reach consistent size results compared to the column-integrated ice distribution as seen by a nadir-viewing instrument. Our results demonstrate that viewing geometry and sampling volume of each instrument must be carefully considered and that the same size distribution assumption cannot simultaneously describe a column-integrated and a local height-resolved size distribution. In particular, applying the standard Gaussian assumption, used by many earlier PMC studies, to both limb and nadir observation leads to an overestimate of particle sizes seen by OSIRIS by about 10 nm as compared to CIPS. We show that the agreement can be improved if a Log-normal assumption with a broad distribution width around σ = 1.42 is adopted for OSIRIS. A reason for this broad distribution best describing the OSIRIS observations we suggest the large retrieval volume of the limb measurement. Gravity waves and other small-scale processes can cause horizontal variations and a co-existence of a wide range of particle populations in the sampling volume. Horizontal integration then leads to apparently much broader size distributions than encountered in a small horizontal sampling volume.
  •  
4.
  • Finke, Kathrin, 1991- (författare)
  • Northern Hemispheric Cold Spells and their Tropospheric-Stratospheric Link
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cold spells have severe consequences for society. They require early warnings for elaborate mitigation strategies on sub-seasonal to seasonal time-scales. Intense stratospheric westerlies and a polar vortex breakdown (SSW) may enhance extended-range forecast skill for Eurasian and North American cold extremes through a dynamic coupling to the troposphere. Understanding the complex interplay remains a challenging task that requires further investigation.Since fine-grained observational stratospheric data is limited to the satellite era, climate model simulations, such as atmosphere-only simulations (AMIP) from the Coupled Model Intercomparison Project Phase 6, can be considered. Application of the common empirical orthogonal function method in Paper II, a tool for multimodel comparison and evaluation, unveiled differences in daily winter 2m temperatures (T2m) across four reanalyses while stratospheric geopotential height varies across AMIP models. Results show a link between a weak polar vortex and cold T2m anomalies over Eurasia in reanalysis data.In addition, quantile regression is a simple but proficient statistical method that neatly enables modeling the response variable’s complete conditional distribution. Thereby, information about extremes, which hide in the distribution’s tails, is extracted. Application to boreal winter ERA5 reanalysis data and teleconnection indices in Paper I reveals significant asymmetries in duration, strength, and direction of the stratosphere-troposphere connection across quantiles. Regionally specific, lagged composite analysis of ERA5 data in Paper III verifies the canonical warm stratosphere - cold Eurasia relation. However, persistent Eurasian cold spells may also coincide with a strong polar vortex. We find stratospheric reflection of upward propagating planetary waves toward the North Atlantic to potentially influence mid-tropospheric circulation anomalies that travel towards Eurasia. By interacting with a quasi-stationary anticyclone over the Barents Sea, which promotes a cold Eurasia, these circulation anomalies likely influence the persistence and strength of the cold spell.Paper IV discusses the relationship between the 2018/2019 winter SSW and the subsequent North American cold spell using the JRA-55 reanalysis. An unusual wave number 3 planetary wave pulse in the stratosphere led to a polar vortex split. Further, wave reflection at the stratospheric Aleutian high likely fostered the circulation configuration, i.e., positive North Pacific and negative North American geopotential height anomalies that facilitated the cold temperatures.
  •  
5.
  • Grygalashvyly, Mykhaylo, et al. (författare)
  • Nighttime O(1D) and corresponding Atmospheric Band emission (762 nm) derived from rocket-borne experiment
  • 2021
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 213
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on common volume rocket-borne measurements of temperature, densities of atomic oxygen and neutral air, we derived O(D-1) nighttime concentrations and corresponding Atmospheric band emission (762 nm). This is one of the first retrievals of the nighttime O(D-1) concentration. Recently, Kalogerakis, Sharma and co-workers have suggested a new production path of O(D-1) based on the reaction of vibrationally excited OH and O. We calculate Atmospheric band volume emission related to the population of O-2(b(1)Sigma(+)(g)) from O(D-1) and compare with total Atmospheric band emissions observed during the same rocket launch. This allows an estimation of the relative contribution of the new Kalogerakis-Sharma mechanism (KSM) to the total Atmospheric band emission. The concentration of O(D-1) due to KSM amounts to several tens cm(-3) with a peak around 95 km. The KSM gives an essential contribution to the total Atmospheric band volume emission (762 nm). Additionally, we illustrate analytically that the expressions for volume emission by the new KSM and the traditional two-step mechanism have similar functional dependences on the atmospheric concentrations of O and O-2. This causes an ambiguity, when interpreting Atmospheric band observations in terms of the one mechanism or the other.
  •  
6.
  • Gumbel, Jörg, et al. (författare)
  • The MATS satellite mission - gravity wave studies by Mesospheric Airglow/Aerosol Tomography and Spectroscopy
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : COPERNICUS GESELLSCHAFT MBH. - 1680-7316 .- 1680-7324. ; 20:1, s. 431-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Global three-dimensional data are a key to understanding gravity waves in the mesosphere and lower thermosphere. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a new Swedish satellite mission that addresses this need. It applies space-borne limb imaging in combination with tomographic and spectroscopic analysis to obtain gravity wave data on relevant spatial scales. Primary measurement targets are O-2 atmospheric band dayglow and nightglow in the near infrared, and sunlight scattered from noctilucent clouds in the ultraviolet. While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric temperature, composition, and cloud properties. Based on these dynamical tracers, MATS will produce a climatology on wave spectra during a 2-year mission. Major scientific objectives include a characterization of gravity waves and their interaction with larger-scale waves and mean flow in the mesosphere and lower thermosphere, as well as their relationship to dynamical conditions in the lower and upper atmosphere. MATS is currently being prepared to be ready for a launch in 2020. This paper provides an overview of scientific goals, measurement concepts, instruments, and analysis ideas.
  •  
7.
  • Park, Woojin, et al. (författare)
  • Flight model characterization of the wide-field off-axis telescope for the MATS satellite
  • 2020
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 59:17, s. 5335-5342
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical characterization, calibration, and performance tests of the Mesospheric Airglow/Aerosol Tomography Spectroscopy (MATS) satellite, which for the first time, to the best of our knowledge, for a satellite, applies a linear-astigmatism-free confocal off-axis reflective optical design. Mechanical tolerances of the telescope were investigated using Monte Carlo methods and single-element perturbations. The sensitivity analysis results indicate that tilt errors of the tertiary mirror and a surface RMS error of the secondary mirror mainly degrade optical performance. From the Monte Carlo simulation, the tolerance limits were calculated to ±0.5 mm, ±1 mm, and ±0.15◦ for decenter, despace, and tilt, respectively. We performed characterization measurements and optical tests with the flight model of the satellite. Multi-channel relative pointing, total optical system throughput, and distortion of each channel were characterized for end-users. Optical performance was evaluated by measuring the modulation transfer function (MTF) and point spread function (PSF). The final MTF performance was 0.25 MTF at 20 lp/mm for the ultraviolet channel (304.5 nm), and 0.25-0.54 MTF at 10 lp/mm for infrared channels. The salient fact of the PSF measurement of this system is that there is no noticeable linear astigmatism detected over a wide field of view (5.67◦ × 0.91◦). All things considered, the design method showed great advantages in wide field of view observations with satellite-level optical performance.
  •  
8.
  • Plane, John M. C., et al. (författare)
  • Opinion : Recent developments and future directions in studying the mesosphere and lower thermosphere
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:20, s. 13255-13282
  • Forskningsöversikt (refereegranskat)abstract
    • This article begins with a review of important advances in the chemistry and related physics of the mesosphere and lower thermosphere (MLT) region of the atmosphere that have occurred over the past 2 decades, since the founding of Atmospheric Chemistry and Physics. The emphasis here is on chemistry, but we also discuss recent findings on atmospheric dynamics and forcings to the extent that these are important for understanding MLT composition and chemistry. Topics that are covered include observations, with satellite, rocket and ground-based techniques; the variability and connectedness of the MLT on various length scales and timescales; airglow emissions; the cosmic dust input and meteoric metal layers; and noctilucent/polar mesospheric ice clouds. The paper then concludes with a discussion of important unanswered questions and likely future directions for the field over the next decade.
  •  
9.
  • Strelnikov, Boris, et al. (författare)
  • Sounding rocket project PMWE for investigation of polar mesosphere winter echoes
  • 2021
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 218
  • Tidskriftsartikel (refereegranskat)abstract
    • A first sounding rocket campaign dedicated to investigate the creation mechanism of Polar Mesosphere Winter Echoes (PMWE) was conducted in April 2018 from the north Norwegian Andøya Space Center (69 °N, 16 °E). Two instrumented sounding rockets were launched on 13th and 18th of April under PMWE and non-PMWE conditions, respectively. In this paper we give an overview of the PMWE sounding rocket mission. We describe and discuss some results of combined in situ and ground-based measurements which allow to verify existing PMWE theories. Our measurements ultimately show that: a) polar winter mesosphere is abounded with meteor smoke particles (MSP) and intermittent turbulent layers, b) all PMWE observed during this campaign can be explained by neutral air turbulence, c) turbulence creates small-scale structures in all D-region constituents, including free electrons; d) MSP ultimately influence the radar volume reflectivity by distorting the turbulence spectrum of electrons, e) the influence of MSP and of background electron density is just to increase SNR.
  •  
10.
  • Yu, Bingkun, et al. (författare)
  • Comparison of middle- and low-latitude sodium layer from a ground-based lidar network, the Odin satellite, and WACCM–Na model
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:17, s. 11485-11504
  • Tidskriftsartikel (refereegranskat)abstract
    • The ground-based measurements obtained from a lidar network and the 6-year OSIRIS (optical spectrograph and infrared imager system) limb-scanning radiance measurements made by the Odin satellite are used to study the climatology of the middle- and low-latitude sodium (Na) layer. Up to January 2021, four Na resonance fluorescence lidars at Beijing (40.5∘ N, 116.0∘ E), Hefei (31.8∘ N, 117.3∘ E), Wuhan (30.5∘ N, 114.4∘ E), and Haikou (19.5∘ N, 109.1∘ E) collected vertical profiles of Na density for a total of 2136 nights (19 587 h). These large datasets provide multi-year routine measurements of the Na layer with exceptionally high temporal and vertical resolution. The lidar measurements are particularly useful for filling in OSIRIS data gaps since the OSIRIS measurements were not made during the dark winter months because they utilize the solar-pumped resonance fluorescence from Na atoms. The observations of Na layers from the ground-based lidars and the satellite are comprehensively compared with a global model of meteoric Na in the atmosphere (WACCM–Na). The lidars present a unique test of OSIRIS and WACCM (Whole Atmosphere Community Climate Model), because they cover the latitude range along 120∘ E longitude in an unusual geographic location with significant gravity wave generation. In general, good agreement is found between lidar observations, satellite measurements, and WACCM simulations. On the other hand, the Na number density from OSIRIS is larger than that from the Na lidars at the four stations within one standard deviation of the OSIRIS monthly average, particularly in autumn and early winter arising from significant uncertainties in Na density retrieved from much less satellite radiance measurements. WACCM underestimates the seasonal variability of the Na layer observed at the lower latitude lidar stations (Wuhan and Haikou). This discrepancy suggests the seasonal variability of vertical constituent transport modelled in WACCM is underestimated because much of the gravity wave spectrum is not captured in the model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (7)
doktorsavhandling (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Gumbel, Jörg (7)
Hedin, Jonas (3)
Broman, Lina, 1981- (3)
Christensen, Ole Mar ... (3)
Gumbel, Jörg, Profes ... (2)
Giono, Gabriel (2)
visa fler...
Megner, Linda (2)
Hammar, Arvid, 1986 (2)
Eberhart, Martin (2)
Löhle, Stefan (2)
Strelnikov, Boris (2)
Fasoulas, Stefanos (2)
Lübken, Franz-Josef (2)
Rapp, Markus (2)
Plane, John M.C. (2)
Chang, Seunghyuk (2)
Pak, Soojong (2)
Park, Woojin (2)
Rouse, Jordan (2)
Marsh, Daniel R. (2)
Khaplanov, Mikhail (1)
Ivchenko, Nickolay, ... (1)
Witt, Georg (1)
Murtagh, Donal, 1959 (1)
Olentsenko, Georgi (1)
Belova, Evgenia (1)
Karlsson, Bodil (1)
Benze, Susanne (1)
Baumgarten, Gerd (1)
Thurairajah, Brentha (1)
Benze, Susanne, PhD (1)
Bailey, Scott, Profe ... (1)
Christensen, Ole Mar ... (1)
Hedin, Jonas, 1976- (1)
Ekebrand, Terese (1)
Stegman, Jacek (1)
Friedrich, Martin (1)
Finke, Kathrin, 1991 ... (1)
Hannachi, Abdel, Dr, ... (1)
Karpechko, Alexey, P ... (1)
Staszak, Tristan (1)
Grygalashvyly, Mykha ... (1)
Gumbel, Jörg, 1965- (1)
Dillner, Joachim (1)
Krus, Mikael (1)
Li, Anqi, 1990 (1)
McCallion, Steven (1)
Chau, Jorge L. (1)
Kalogerakis, Konstan ... (1)
Stude, Joan (1)
visa färre...
Lärosäte
Stockholms universitet (10)
Chalmers tekniska högskola (3)
Kungliga Tekniska Högskolan (2)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy