SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gustavsson Johan 1974 ) srt2:(2020-2024)"

Sökning: WFRF:(Gustavsson Johan 1974 ) > (2020-2024)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bickham, S., et al. (författare)
  • Low cutoff G.657-compatible fiber for data center interconnects operating in the 1064 and 1310 nm windows
  • 2020
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11286
  • Konferensbidrag (refereegranskat)abstract
    • Optical interconnects in data centers have traditionally used 850 nm GaAs-based vertical-cavity surface-emitting lasers (VCSELs) in combination with multimode fiber, having a reach up to 100 m in length. Longer links typically use standard single-mode fiber in conjunction with either InP-based edge-emitting lasers or silicon photonic transmitters operating in the 1310 nm or 1550 nm window. Single-mode GaAs-based VCSELs operating at 1064 nm offer another path for achieving longer system reach. Potential advantages of these VCSELs include better power efficiency, modulation speeds reaching 50 Gbps and large-scale fabrication volumes. The longer wavelength is also beneficial due to the lower attenuation and chromatic dispersion of optical fibers at that wavelength. However, one practical issue for single-mode transmission is that the G.657 standard for single-mode fiber requires that the 22-meter cable cutoff wavelength be less than 1260 nm, and these fibers are typically few-moded at 1064 nm. The large differences between the group velocities of the LP01 and LP11 modes can lead to degradation of the system performance due to multi-path interference if the higher order modes are present. To resolve this quandary, we have designed and validated the performance of a new optical fiber which is single-moded at wavelengths less than 1064 nm, but also has G.657-compliant mode field diameter and dispersion characteristics that enable it to be used in the 1310 nm window.
  •  
2.
  • Buffolo, M., et al. (författare)
  • Modeling of the Optical and Electrical Degradation of 845 nm VCSILs
  • 2023
  • Ingår i: 2023 Conference on Lasers and Electro-Optics, CLEO 2023.
  • Konferensbidrag (refereegranskat)abstract
    • Optical and electrical degradation of novel micro-transfer-printed VCSILs is investigated. Modeling of experimental data suggests that the main degradation mechanism is represented by the relocation of impurities, originating from the p-side, toward the active region.
  •  
3.
  •  
4.
  • Cardinali, G., et al. (författare)
  • Low-Threshold AlGaN-based UVB VCSELs enabled by post-growth cavity detuning
  • 2022
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 121:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of vertical-cavity surface-emitting lasers (VCSELs) is strongly dependent on the spectral detuning between the gain peak and the resonance wavelength. Here, we use angle-resolved photoluminescence spectroscopy to investigate the emission properties of AlGaN-based VCSELs emitting in the ultraviolet-B spectral range with different detuning between the photoluminescence peak of the quantum-wells and the resonance wavelength. Accurate setting of the cavity length, and thereby the resonance wavelength, is accomplished by using doping-selective electrochemical etching of AlGaN sacrificial layers for substrate removal combined with deposition of dielectric spacer layers. By matching the resonance wavelength to the quantum-wells photoluminescence peak, a threshold power density of 0.4 MW/cm2 was achieved, and this was possible only for smooth etched surfaces with a root mean square roughness below 2 nm. These results demonstrate the importance of accurate cavity length control and surface smoothness to achieve low-Threshold AlGaN-based ultraviolet VCSELs.
  •  
5.
  •  
6.
  • Chang, Tsu Chi, et al. (författare)
  • Electrically Injected GaN-Based Vertical-Cavity Surface-Emitting Lasers with TiO2 High-Index-Contrast Grating Reflectors
  • 2020
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 7:4, s. 861-866
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the first electrically injected GaN-based vertical-cavity surface-emitting lasers (VCSELs) with a TiO2 high-index-contrast grating (HCG) as the top mirror. Replacing the top distributed Bragg reflector (DBR) with an HCG offers substantial thickness reduction, polarization-pinning, and setting of the resonance wavelength by the grating parameters. Conventional HCGs are usually suspended in the low refractive index material, such as air, in order to create the largest refractive index contrast. However, the mechanical stability of such structures can be questioned and creating free-hanging GaN-membrane on top of GaN is problematic. We have therefore fabricated TiO2-HCGs resting directly on GaN without an air-gap. No DBR layers are used below the HCG to boost the reflectivity. A VCSEL with an aperture diameter of 10 μm shows a threshold current of 25 mA under pulsed operation at room temperature. The lasing modes locate around 400 nm and are transversely electrically -polarized with a line width of 0.5 nm. The full-width half-maximum beam divergence is 10°. This demonstration of a TiO2-HCG VCSEL offers a new route to achieve polarization pinning and could also allow additional benefits such as postgrowth setting of the resonance wavelength.
  •  
7.
  • Chang, Tsu-Chi, et al. (författare)
  • GaN-based vertical-cavity surface-emitting laser incorporating a TiO2 high-index-contrast grating
  • 2020
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11280
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrate the first electrically injected GaN-based VCSEL with a TiO2 high-contrast grating (HCG) as the top mirror. The TiO2-HCG rested directly on the n-GaN without an airgap for mechanical stability. A VCSEL with an aperture diameter of 10 mu m had a threshold current of 25 mA under pulsed operation at room temperature. Multiple longitudinal modes coexist around 400 nm, each TM-polarized with a linewidth of 0.5 nm (spectral resolution limited). This first demonstration of a TiO2-HCG VCSEL offers a new route to achieve polarization pinning and could also allow additional benefits such as post-growth setting of resonance wavelength.
  •  
8.
  • Goyvaerts, Jeroen, et al. (författare)
  • Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing
  • 2021
  • Ingår i: Optica. - 2334-2536. ; 8:12, s. 1573-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • New wavelength domains have become accessible for photonic integrated circuits (PICs) with the development of silicon nitride PICs. In particular, the visible and near-infrared wavelength range is of interest for a range of sensing and communication applications. The integration of energy-efficient III-V lasers, such as vertical-cavity surface-emitting lasers (VCSELs), is important for expanding the application portfolio of such PICs. However, most of the demonstrated integration approaches are not easily scalable towards low-cost and large-volume production. In this work, we demonstrate the micro-transfer-printing of bottom-emitting VCSELs on silicon nitride PICs as a path to achieve this. The demonstrated 850 nm lasers show waveguide-coupled powers exceeding 100 mu W, with sub-mA lasing thresholds and mW-level power consumption. A single-mode laser with a side-mode suppression ratio over 45 dB and a tuning range of 5 nm is demonstrated. Combining micro-transfer-printing integration with the extended-cavity VCSEL design developed in this work provides the silicon nitride PIC industry with a great tool to integrate energy-efficient VCSELs onto silicon nitride PICs.
  •  
9.
  • Grabowski, Alexander, 1993, et al. (författare)
  • Impact of Carrier Transport and Capture on VCSEL Dynamics
  • 2023
  • Ingår i: IEEE Journal of Quantum Electronics. - 0018-9197 .- 1558-1713. ; 59:1, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a vertical-cavity surface-emitting laser (VCSEL) equivalent circuit model based on two carrier rate equations to include effects of carrier dynamics, we study the impact of carrier transport and capture on the small- and large-signal modulation response of high-speed VCSELs. The model also accounts for parasitics, current-induced self-heating, and gain compression. A variation of the effective capture time from 1 to 15 ps is found to have a large impact on the small-signal modulation response, with the 3 dB bandwidth decreasing from 40 to 15 GHz and the response transitioning from under-damped to over-damped. This is primarily due to the increasing low frequency parasitic-like roll-off with increasing effective capture time. A significant effect on the optical waveforms produced by the VCSEL under 56 Gbit/s on-off keying (OOK) non-return-to-zero (NRZ) and pulse-amplitude modulation 4 (PAM4) modulation is observed, with a short effective capture time leading to horizontal eye closure caused by timing jitter (TJ) and intersymbol interference (ISI) and a long effective capture time leading to vertical eye closure caused by long rise- and fall-times. However, for high modulation speed, a short effective capture time is needed and the photon lifetime should be set for clear eye opening. We also show the impact of the effective capture time on the output power vs current characteristics and map the dependence of internal temperature, carrier densities, carrier escape and leakage rates, and spontaneous recombination rates on current for different effective capture times.
  •  
10.
  • Grabowski, Alexander, 1993, et al. (författare)
  • Large-Signal Equivalent Circuit for Datacom VCSELs
  • 2021
  • Ingår i: Journal of Lightwave Technology. - 0733-8724 .- 1558-2213. ; 39:10, s. 3225-3236
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing the baud rate in optical interconnects (OIs) will require the use of more sophisticated driver and receiver electronics. This will help overcome the stagnated bandwidth of the Vertical-Cavity Surface-Emitting Laser (VCSEL) and the pin-photodetector. Next generation OIs operating at single lane rates of 50+ Gbaud will therefore require careful co-optimization of the electronics and the optoelectronics. To facilitate this work there is a need of an accurate equivalent circuit for the optoelectronic components, functioning over a broad drive current and ambient temperature range. The VCSEL is the most important and complex to model due to its non-linear behavior and strongly varying characteristics with drive current and ambient temperature. For this purpose, a large-signal equivalent circuit dedicated for high-speed datacom VCSELs has been developed and is presented here. The distributed electrical parasitics in the device layout are carefully considered, the intrinsic speed limitation from carrier transport effects in the Separate-Confinement-Heterostructure (SCH) and the carrier-photon interaction in the Quantum Wells (QWs) are included, and self-heating effects in the device are monitored. The circuit is purposely based on physical instead of empirical models so that it can provide usable feedback to VCSEL designers. For circuit demonstration, it is implemented in Keysight's Advanced Design System (ADS) software and thereafter applied to replicate the performance of a state-of-the-art 28-GHz-bandwidth VCSEL at different temperatures and drive currents. Comparison is made between simulated and measured steady-state characteristics, small-signal behavior, and large-signal response under 28 Gbaud On-Off-Keying (OOK) and Pulse-Amplitude-Modulation 4 (PAM4) modulation, showing good agreement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy