SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Höppner Marc) srt2:(2012)"

Sökning: WFRF:(Höppner Marc) > (2012)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baumann, Martina, et al. (författare)
  • Artificially designed promoters : understanding the role of spatial features and canonical binding sites in transcription
  • 2012
  • Ingår i: Bioengineered Bugs. - : Informa UK Limited. - 1949-1018 .- 1949-1026. ; 3:2, s. 120-123
  • Tidskriftsartikel (refereegranskat)abstract
    • The promoter is a key element in gene transcription and regulation. We previously reported that artificial sequences rich in the dinucleotide CpG are sufficient to drive expression in vitro in mammalian cell lines, without requiring canonical binding sites for transcription factor proteins. Here, we report that introducing a promoter organization that alternates in CpGs and regions rich in A and T further increases expression strength, as well as how insertion of specific binding sites makes such sequences respond to induced levels of the transcription factor NFκB. Our findings further contribute to the mechanistic understanding of promoters, as well as how these sequences might be shaped by evolutionary pressure in living organisms.
  •  
2.
  • Curtis, Bruce A., et al. (författare)
  • Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 492:7427, s. 59-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host-and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
  •  
3.
  • Höppner, Marc P, et al. (författare)
  • Comparative analysis of RNA families reveals distinct repertoires for each domain of life
  • 2012
  • Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 8:11, s. e1002752-
  • Tidskriftsartikel (refereegranskat)abstract
    • The RNA world hypothesis, that RNA genomes and catalysts preceded DNA genomes and genetically-encoded protein catalysts, has been central to models for the early evolution of life on Earth. A key part of such models is continuity between the earliest stages in the evolution of life and the RNA repertoires of extant lineages. Some assessments seem consistent with a diverse RNA world, yet direct continuity between modern RNAs and an RNA world has not been demonstrated for the majority of RNA families, and, anecdotally, many RNA functions appear restricted in their distribution. Despite much discussion of the possible antiquity of RNA families, no systematic analyses of RNA family distribution have been performed. To chart the broad evolutionary history of known RNA families, we performed comparative genomic analysis of over 3 million RNA annotations spanning 1446 families from the Rfam 10 database. We report that 99% of known RNA families are restricted to a single domain of life, revealing discrete repertoires for each domain. For the 1% of RNA families/clans present in more than one domain, over half show evidence of horizontal gene transfer (HGT), and the rest show a vertical trace, indicating the presence of a complex protein synthesis machinery in the Last Universal Common Ancestor (LUCA) and consistent with the evolutionary history of the most ancient protein-coding genes. However, with limited interdomain transfer and few RNA families exhibiting demonstrable antiquity as predicted under RNA world continuity, our results indicate that the majority of modern cellular RNA repertoires have primarily evolved in a domain-specific manner.
  •  
4.
  • Höppner, Marc P., et al. (författare)
  • Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility
  • 2012
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 12, s. 183-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Small nucleolar (sno) RNAs are required for posttranscriptional processing and modification of ribosomal, spliceosomal and messenger RNAs. Their presence in both eukaryotes and archaea indicates that snoRNAs are evolutionarily ancient. The location of some snoRNAs within the introns of ribosomal protein genes has been suggested to belie an RNA world origin, with the exons of the earliest protein-coding genes having evolved around snoRNAs after the advent of templated protein synthesis. Alternatively, this intronic location may reflect more recent selection for coexpression of snoRNAs and ribosomal components, ensuring rRNA modification by snoRNAs during ribosome synthesis. To gain insight into the evolutionary origins of this genetic organization, we examined the antiquity of snoRNA families and the stability of their genomic location across 44 eukaryote genomes. Results: We report that dozens of snoRNA families are traceable to the Last Eukaryotic Common Ancestor (LECA), but find only weak similarities between the oldest eukaryotic snoRNAs and archaeal snoRNA-like genes. Moreover, many of these LECA snoRNAs are located within the introns of host genes independently traceable to the LECA. Comparative genomic analyses reveal the intronic location of LECA snoRNAs is not ancestral however, suggesting the pattern we observe is the result of ongoing intragenomic mobility. Analysis of human transcriptome data indicates that the primary requirement for hosting intronic snoRNAs is a broad expression profile. Consistent with ongoing mobility across broadly-expressed genes, we report a case of recent migration of a non-LECA snoRNA from the intron of a ubiquitously expressed non-LECA host gene into the introns of two LECA genes during the evolution of primates. Conclusions: Our analyses show that snoRNAs were a well-established family of RNAs at the time when eukaryotes began to diversify. While many are intronic, this association is not evolutionarily stable across the eukaryote tree; ongoing intragenomic mobility has erased signal of their ancestral gene organization, and neither introns-first nor evolved co-expression adequately explain our results. We therefore present a third model - constrained drift - whereby individual snoRNAs are intragenomically mobile and may occupy any genomic location from which expression satisfies phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy