SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hagermann Axel) srt2:(2020-2024)"

Sökning: WFRF:(Hagermann Axel) > (2020-2024)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attree, Nicholas, et al. (författare)
  • Gas flow in Martian spider formation
  • 2021
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 359
  • Tidskriftsartikel (refereegranskat)abstract
    • Martian araneiform terrain, located in the Southern polar regions, consists of features with central pits and radial troughs which are thought to be associated with the solid state greenhouse effect under a CO2 ice sheet. Sublimation at the base of this ice leads to gas buildup, fracturing of the ice and the flow of gas and entrained regolith out of vents and onto the surface. There are two possible pathways for the gas: through the gap between the ice slab and the underlying regolith, as proposed by Kieffer (2007), or through the pores of a permeable regolith layer, which would imply that regolith properties can control the spacing between adjacent spiders, as suggested by Hao et al. (2019). We test this hypothesis quantitatively in order to place constraints on the regolith properties. Based on previously estimated flow rates and thermophysical arguments, we suggest that there is insufficient depth of porous regolith to support the full gas flow through the regolith. By contrast, free gas flow through a regolith–ice gap is capable of supplying the likely flow rates for gap sizes on the order of a centimetre. This size of gap can be opened in the centre of a spider feature by gas pressure bending the overlying ice slab upwards, or by levitating it entirely as suggested in the original Kieffer (2007) model. Our calculations therefore support at least some of the gas flowing through a gap opened between the regolith and ice. Regolith properties most likely still play a role in the evolution of spider morphology, by regolith cohesion controlling the erosion of the central pit and troughs, for example.
  •  
2.
  • Butcher, Frances E.G., et al. (författare)
  • Eskers associated with buried glaciers in Mars' mid latitudes: recent advances and future directions
  • 2022
  • Ingår i: Annals of Glaciology. - : Cambridge University Press. - 0260-3055 .- 1727-5644. ; 63:87-89, s. 33-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Until recently, the influence of basal liquid water on the evolution of buried glaciers in Mars' mid latitudes was assumed to be negligible because the latter stages of Mars' Amazonian period (3 Ga to present) have long been thought to have been similarly cold and dry to today. Recent identifications of several landforms interpreted as eskers associated with these young (100s Ma) glaciers calls this assumption into doubt. They indicate basal melting (at least locally and transiently) of their parent glaciers. Although rare, they demonstrate a more complex mid-to-late Amazonian environment than was previously understood. Here, we discuss several open questions posed by the existence of glacier-linked eskers on Mars, including on their global-scale abundance and distribution, the drivers and dynamics of melting and drainage, and the fate of meltwater upon reaching the ice margin. Such questions provide rich opportunities for collaboration between the Mars and Earth cryosphere research communities.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Lethuillier, A., et al. (författare)
  • Cometary dust analogues for physics experiments
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 515:3, s. 3420-3438
  • Tidskriftsartikel (refereegranskat)abstract
    • The CoPhyLab (Cometary Physics Laboratory) project is designed to study the physics of comets through a series of earth-based experiments. For these experiments, a dust analogue was created with physical properties comparable to those of the non-volatile dust found on comets. This ‘CoPhyLab dust’ is planned to be mixed with water and CO2 ice and placed under cometary conditions in vacuum chambers to study the physical processes taking place on the nuclei of comets. In order to develop this dust analogue, we mixed two components representative for the non-volatile materials present in cometary nuclei. We chose silica dust as a representative for the mineral phase and charcoal for the organic phase, which also acts as a darkening agent. In this paper, we provide an overview of known cometary analogues before presenting measurements of eight physical properties of different mixtures of the two materials and a comparison of these measurements with known cometary values. The physical properties of interest are particle size, density, gas permeability, spectrophotometry, and mechanical, thermal, and electrical properties. We found that the analogue dust that matches the highest number of physical properties of cometary materials consists of a mixture of either 60 per cent/40 per cent or 70 per cent/30 per cent of silica dust/charcoal by mass. These best-fit dust analogue will be used in future CoPhyLab experiments.
  •  
8.
  • Michikami, Tatsuhiro, et al. (författare)
  • Boulder sizes and shapes on asteroids : A comparative study of Eros, Itokawa and Ryugu
  • 2021
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 357
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to understand the geological evolution of asteroids Eros, Itokawa and Ryugu and their collisional history, previous studies investigated boulder size distributions on their surfaces. However, quantitative comparison of these size distributions is hampered by numerous differences between these studies regarding the definition of a boulder's size, measuring technique and the fitting method to determine the power-index of the boulder size distributions. We provide a consistent and coherent model of boulder size distributions by remeasuring the boulders on the entire surfaces of Eros and Itokawa using the Small Body Mapping Tool (SBMT) and combining our observations with the Ryugu data of Michikami et al. (2019). We derived power-indices of the boulder size distributions of −3.25 ± 0.14 for Eros, −3.05 ± 0.14 for Itokawa and −2.65 ± 0.05 for Ryugu. The asteroid with the highest number density of boulders ≥ 5 m turns out to be Ryugu, not Itokawa, as suggested by an earlier study. We show that the appearance of the boulders tends towards more elongated shapes as the size of an asteroid decreases, which can be explained by differences in asteroid gravity and boulder friction angles. Our quantitative observational results indicate that boulder migration preferentially affects smaller boulders, and tends to occur on larger asteroids.
  •  
9.
  • Michikami, Tatsuhiro, et al. (författare)
  • The influence of chondrules on sub-mm fragment shape distributions in Allende impact experiments
  • 2024
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 415
  • Tidskriftsartikel (refereegranskat)abstract
    • The surfaces of sub-kilometer-sized asteroids directly explored by spacecraft, such as Itokawa, Ryugu and Bennu, are covered with blocks and/or regolith particles, whose shapes are considered clues to understanding their formation and evolution on the asteroid's surface. Ryugu particles returned by the Hayabusa2 mission are likely fragments resulting from impacts because their shapes resemble impact fragments from laboratory experiments. However, there is a lack of laboratory impact experiments examining the shapes of fragments in carbonaceous chondrites, thought to originate from carbonaceous asteroids such as Ryugu and Bennu. The measured sizes of Ryugu particles are in the mm and sub-mm range, similar to the sizes of chondrules. Also, carbonaceous chondrites are generally structurally weaker than the basalts and granites often used in previous laboratory impact experiments. Differences in the strength of the chondrules and matrix might affect the overall strength of the meteorite. In this study, as a first step towards a better understanding of impact fragment shapes in carbonaceous chondrites, we conducted impact experiments on the carbonaceous meteorite Allende (CV3). A spherical alumina projectile with 1.0 mm and a glass projectile with 0.80 mm in diameter were fired into 1–2 cm-sized Allende targets at nominal impact velocities of 2.0 and 4.0 km/s, respectively. To investigate the correlation between the chondrules (typically sub-mm in size) and the shapes of fine fragments, we measured the shape distributions of sub-mm impact fragments using X-ray microtomography. We observed several impact fracture surfaces along the chondrule boundaries. In addition, these fragments tended to be rounder than fragments from previous impact experiments. However, because the total number of these fragments is relatively small, the fragments were found to have the same overall shape distribution as previous laboratory impact fragments, Itokawa particles and Ryugu particles. This may imply that impact fragment shapes are independent of the bulk material strength. These findings will be useful for understanding the formation process of regolith layers on asteroid surfaces, Itokawa particles, Ryugu particles, and Bennu particles.
  •  
10.
  • Michikami, Tatsuhiro, et al. (författare)
  • Three-axial shape distributions of pebbles, cobbles and boulders smaller than a few meters on asteroid Ryugu
  • 2022
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 381
  • Tidskriftsartikel (refereegranskat)abstract
    • Over a broad size range, the shapes of impact fragments from catastrophic disruptions are distributed around the mean axial ratio 2: √2: 1, irrespective of experimental conditions and target materials. Although most blocks on asteroids are likely to be impact fragments, there is not enough quantitative data for reliable statistics on their three-axial lengths and/or ratios because it is difficult to precisely estimate the heights of the blocks. In this study, we evaluate the heights of blocks on asteroid Ryugu by measuring their shadows. The three-axial ratios of ~4100 small blocks with diameters from 5.0 cm to 7.6 m in Ryugu's equatorial region are investigated using eight close-up images of narrower localities taken at altitudes below 500 m, i.e. at <5.4 cm/pixel resolution, obtained immediately before the second touch-down of the Hayabusa2 spacecraft. The purpose of this study is to investigate the block shape distribution, which is important for understanding the geological history of asteroid Ryugu. Specifically, the shape distribution is compared to laboratory impact fragments. Our observations indicate that the shape distributions of blocks smaller than 1 m on Ryugu are consistent with laboratory impact fragment shape distributions, implying that the dominant shape-determining process for blocks on Ryugu was impact fragmentation. Blocks several meters in size in the equatorial region seem to be slightly flatter than the rest, suggesting that some blocks are partly buried in a bed of regolith. In conclusion, the shape distributions of blocks from several-cm to several-m in the equatorial region of asteroid Ryugu suggest that these are mainly fragments originating from the catastrophic disruption of their parent body and/or from a later impact.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy