SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hagfeldt Anders) srt2:(2020-2024)"

Sökning: WFRF:(Hagfeldt Anders) > (2020-2024)

  • Resultat 1-10 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlawat, Paramvir, et al. (författare)
  • A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure alpha-FAPbI3
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:17
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well established that the lack of understanding the crystallization process in a two-step sequential deposition has a direct impact on efficiency, stability, and reproducibility of perovskite solar cells. Here, we try to understand the solid-solid phase transition occurring during the two-step sequential deposition of methylammonium lead iodide and formamidinium lead iodide. Using metadynamics, x-ray diffraction, and Raman spectroscopy, we reveal the microscopic details of this process. We find that the formation of perovskite proceeds through intermediate structures and report polymorphs found for methylammonium lead iodide and formamidinium lead iodide. From simulations, we discover a possible crystallization pathway for the highly efficient metastable alpha phase of formamidinium lead iodide. Guided by these simulations, we perform experiments that result in the low-temperature crystallization of phase-pure alpha-formamidinium lead iodide.
  •  
2.
  • Alharbi, Essa A., et al. (författare)
  • Formation of High-Performance Multi-Cation Halide Perovskites Photovoltaics by delta-CsPbI3/delta-RbPbI3 Seed-Assisted Heterogeneous Nucleation
  • 2021
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 11:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of perovskite solar cells is highly dependent on the fabrication method; thus, controlling the growth mechanism of perovskite crystals is a promising way towards increasing their efficiency and stability. Herein, a multi-cation halide composition of perovskite solar cells is engineered via the two-step sequential deposition method. Strikingly, it is found that adding mixtures of 1D polymorphs of orthorhombic delta-RbPbI3 and delta-CsPbI3 to the PbI2 precursor solution induces the formation of porous mesostructured hexagonal films. This porosity greatly facilitates the heterogeneous nucleation and the penetration of FA (formamidinium)/MA (methylammonium) cations within the PbI2 film. Thus, the subsequent conversion of PbI2 into the desired multication cubic alpha-structure by exposing it to a solution of formamidinium methylammonium halides is greatly enhanced. During the conversion step, the delta-CsPbI3 also is fully integrated into the 3D mixed cation perovskite lattice, which exhibits high crystallinity and superior optoelectronic properties. The champion device shows a power conversion efficiency (PCE) over 22%. Furthermore, these devices exhibit enhanced operational stability, with the best device retaining more than 90% of its initial value of PCE under 1 Sun illumination with maximum power point tracking for 400 h.
  •  
3.
  • An, Jincheng, et al. (författare)
  • Fine-Tuning by Triple Bond of Carbazole Derivative Dyes to Obtain High Efficiency for Dye-Sensitized Solar Cells with Copper Electrolyte
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : NLM (Medline). - 1944-8244 .- 1944-8252. ; 12:41, s. 46397-46405
  • Tidskriftsartikel (refereegranskat)abstract
    • Three novel dyes consisting of a 5,8,15-tris(2-ethylhexyl)-8,15-dihydro-5H-benzo[1,2-b:3,4-b':6,5-b″]tricarbazole (BTC) electron-donating group and a 4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTBT) π-bridge with an anchoring group of phenyl carboxyl acid were synthesized and applied in dye-sensitized solar cells (DSCs).The AJ202 did not contain any triple bonds, the AJ201's ethynyl group was inserted between the BTC and BTBT units, and the AJ206's ethynyl group was introduced between the BTBT moiety and the anchor group. The inclusion and position of the ethynyl linkage in the sensitizer molecules significantly altered the electrochemical properties of these dyes, which can fine-tune the energy levels of the dyes. The best performing devices contained AJ206 as a sensitizer and a Cu(I/II) redox couple, which resulted in a power conversion efficiency (PCE) up to 10.8% under the standard AM 1.5 G illumination, which obtained PCEs higher than those from the devices that contained AJ201 (9.2%) and AJ202 (9.7%) under the same conditions. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the sensitizers were tuned to be well-suited for the Cu(I/II) redox potential and the Fermi level of TiO2. The innovative synthesis of a tricarbazole-based donor moiety in a sensitizer used in combination with a Cu(I/II) redox couple has resulted in relatively high PCEs.
  •  
4.
  • An, Jincheng, et al. (författare)
  • Thiophene-fused carbazole derivative dyes for high-performance dye-sensitized solar cells
  • 2021
  • Ingår i: Tetrahedron. - : Elsevier BV. - 0040-4020 .- 1464-5416. ; 88
  • Tidskriftsartikel (refereegranskat)abstract
    • Two novel dyes that are similar in chemical structure, except for different donor units, AJ301and AJ303 were synthesized, characterized and applied as sensitizers in dye-sensitized solar cells (DSSCs). Both dyes exhibited a wide absorption of visible sunlight. The introduction of fused rings on the donor unit of AJ303 presented an appropriate energy level, less recombination and longer electron lifetime to achieve a power conversion efficiency (PCE) of 10.2%, far above that achieved for AJ301 of 6.2% with a [Co(bpy)(3)](2+/3+)-based electrolyte under standard AM1.5G solar irradiation (100 mW cm(-2)). The DSSCs based on AJ303 and AJ301 with [Cu(tmby)(2)](2+/+)-based electrolyte showed a lower PCE of 8.2% and 5.4%, respectively. Therefore, the results indicated that the introduction of a fused-ring in the donor group is a meaningful synthetic strategy to improve the photovoltaic performance.
  •  
5.
  • Bogachuk, Dmitry, et al. (författare)
  • Perovskite Solar Cells with Carbon-Based Electrodes - Quantification of Losses and Strategies to Overcome Them
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon-based electrodes represent a promising approach to improve stability and up-scalability of perovskite photovoltaics. The temperature at which these contacts are processed defines the absorber grain size of the perovskite solar cell: in cells with low-temperature carbon-based electrodes (L-CPSCs), layer-by-layer deposition is possible, allowing perovskite crystals to be large (>100 nm), while in cells with high-temperature carbon-based contacts (H-CPSCs), crystals are constrained to 10-20 nm in size. To enhance the power conversion efficiency of these devices, the main loss mechanisms are identified for both systems. Measurements of charge carrier lifetime, quasi-Fermi level splitting (QFLS) and light-intensity-dependent behavior, supported by numerical simulations, clearly demonstrate that H-CPSCs strongly suffer from non-radiative losses in the perovskite absorber, primarily due to numerous grain boundaries. In contrast, large crystals of L-CPSCs provide a long carrier lifetime (1.8 mu s) and exceptionally high QFLS of 1.21 eV for an absorber bandgap of 1.6 eV. These favorable characteristics explain the remarkable open-circuit voltage of over 1.1 V in hole-selective layer-free L-CPSCs. However, the low photon absorption and poor charge transport in these cells limit their potential. Finally, effective strategies are provided to reduce non-radiative losses in H-CPSCs, transport losses in L-CPSCs, and to improve photon management in both cell types.
  •  
6.
  • Cai, Bin, et al. (författare)
  • Unveiling the light soaking effects of the CsPbI3 perovskite solar cells
  • 2020
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 472
  • Tidskriftsartikel (refereegranskat)abstract
    • Pure inorganic perovskite of CsPbI3 attracts great attentions due to its excellent thermal stability and more suitable bandgap for tandem solar cells. The power conversion efficiency (PCE) of CsPbI3 perovskite solar cells has swiftly increased to 19.03%. However, extensive researches on the material property and photovoltaic characterization are rather rare in the literatures. In this study, a remarkable light soaking effect is found in the CsPbI3 based perovskite solar cells as the PCE increases from 10.8% to 18.3% after 180 s soaking under AM 1.5G sunlight. Mechanisms behind this reproducible soaking effect have also been studied. It reveals that the depressed dark current caused by a stronger built-in field and the decreased defects density passivated by the photogenerated electrons result in the enhanced PCE after light soaking. Moreover, we carefully characterize that the supposed "HPbI3" should be "DMAPbI(3)" synthesized through anti-solvent vapor recrystallisation method.
  •  
7.
  • Campanari, Valerio, et al. (författare)
  • Reevaluation of Photoluminescence Intensity as an Indicator of Efficiency in Perovskite Solar Cells
  • 2022
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; 6:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The photoluminescence (PL) intensity is often used as an indicator of the performance of perovskite solar cells and indeed the PL technique is often used for the characterization of these devices and their constituent materials. Herein, a systematic approach is presented to the comparison of the conversion efficiency and the PL intensity of a cell in both open-circuit (OC) and short-circuit (SC) conditions and its application to multiple heterogeneous devices. It is shown that the quenching of the PL observed in SC conditions is a good parameter to assess the device efficiency. The authors explain the dependence of the PL quenching ratio between OC and SC on the cell efficiency with a simple model that is also able to estimate the carrier extraction time of a device.
  •  
8.
  • Cao, Qi, et al. (författare)
  • N-Type Conductive Small Molecule Assisted 23.5% Efficient Inverted Perovskite Solar Cells
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:34
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of the compatibility with tandem devices and the ability to be manufactured at low temperatures, inverted perovskite solar cells have generated far-ranging interest for potential commercial applications. However, their efficiency remains inadequate owing to various traps in the perovskite film and the restricted hole blocking ability of the electron transport layer. Thus, in this work, a wide-bandgap n-type semiconductor, 4,6-bis(3,5-di(pyridin-4-yl)phenyl)-2-phenylpyrimidine (B4PyPPM), to modify a perovskite film via an anti-solvent method is introduced. The nitrogen sites of pyrimidine and pyridine rings in B4PyPPM exhibit strong interactions with the undercoordinated lead ions in the perovskite material. These interactions can reduce the trap state densities and inhibit nonradiative recombination of the perovskite bulk. Moreover, B4PyPPM can partially aggregate on the perovskite surface, leading to an improvement in the hole-blocking ability at its interface. This modification can also increase the built-in potential and upshift the Fermi level of the modified perovskite film, promoting electron extraction to the electron transport layer. The champion device achieves a high efficiency of 23.51%. Meantime, the sealed device retains approximate to 80% of its initial performance under a maximum power point tracking for nearly 2400 h, demonstrating an excellent operational stability.
  •  
9.
  • Chen, Jingxuan, et al. (författare)
  • Emerging perovskite quantum dot solar cells : feasible approaches to boost performance
  • 2021
  • Ingår i: Energy & Environmental Science. - CAMBRIDGE ENGLAND : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 14:1, s. 224-261
  • Forskningsöversikt (refereegranskat)abstract
    • Lead halide perovskite quantum dots (PQDs), also called perovskite nanocrystals, are considered as one of the most promising classes of photovoltaic materials for solar cells due to their prominent optoelectronic properties and simple preparation techniques. Remarkable achievements in PQD solar cells (PQDSCs) have been made. In particular, the power conversion efficiency of PQDSCs has been largely pushed from 10.77% to 17.39% (certified 16.6%) by finely controlling the surface chemistry of PQDs and the device physics of PQDSCs. In this review, we summarize the latest advances of emerging PQDSCs and discuss various strategies applied to improve the device performance of PQDSCs, including the synthesis methods, compositional engineering and surface chemistry of PQDs. Moreover, the device operation of PQDSCs is discussed to highlight the effect of device architecture on the photovoltaic performance of PQDSCs. Facing the practical applications of the PQDSCs under ambient conditions, device stability is also highlighted. Finally, conclusions and perspectives are presented along with the possible challenges and opportunities to promote development steps of PQDSCs with higher photovoltaic performance and robust stability.
  •  
10.
  • Chen, Lu, et al. (författare)
  • Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion
  • 2021
  • Ingår i: Cell Reports Physical Science. - : Elsevier. - 2666-3864. ; 2:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the highly complex polyphenolic structure of lignin, depolymerization without a prior chemical treatment is challenging, and new catalysts are required. Atomically dispersed catalysts are able to maximize the atomic efficiency of noble metals, simultaneously providing an alternative strategy to tune the activity and selectivity by alloying with other abundant metal supports. Here, we report a highly active and selective catalyst comprising monodispersed (single) Pt atoms on Ni nanoparticles supported on carbon (denoted as Pt1Ni/C, where Pt-1 represents single Pt atoms), designed for the reductive depolymerization of lignin. Selectivity toward 4-n-propylsyringol and 4-n-propylguaiacol exceeds 90%. The activity and selectivity of the Pt1Ni/C catalyst in the reductive depolymerization of lignin may be attributed to synergistic effects between the Ni nanoparticles and the single Pt atoms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 64

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy