SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Halim S) srt2:(2000-2004)"

Sökning: WFRF:(Halim S) > (2000-2004)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Efanov, AM, et al. (författare)
  • Insulinotropic activity of the imidazoline derivative RX871024 in the diabetic GK rat
  • 2002
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 282:1, s. E117-E124
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulinotropic activity of the imidazoline derivative RX871024 was compared in pancreatic islets from nondiabetic Wistar rats and spontaneously diabetic Goto-Kakizaki (GK) rats. RX871024 significantly stimulated insulin secretion in islets from both animal groups. The insulinotropic activity of RX871024 was higher than that of the sulfonylurea glibenclamide. This difference was more pronounced in islets from GK rats compared with Wistar rat islets. More importantly, RX871024 substantially improved glucose sensitivity in diabetic β-cells, whereas glibenclamide stimulated insulin secretion about twofold over a broad range of glucose concentrations in nondiabetic and diabetic rats. RX871024 induced a faster increase in cytosolic free Ca2+concentration and faster inhibition of ATP-dependent K+channel activity in GK rat islets compared with Wistar rat islets. RX871024 also induced a more pronounced increase in diacylglycerol concentration in GK rat islets. These data support the idea that imidazoline compounds can form the basis for the development of novel drugs for treatment of type 2 diabetes, which can restore glucose sensitivity in diabetic β-cells.
  •  
3.
  •  
4.
  •  
5.
  • Portela-Gomes, GM, et al. (författare)
  • PACAP is expressed in secretory granules of insulin and glucagon cells in human and rodent pancreas - Evidence for generation of cAMP compartments uncoupled from hormone release in diabetic islets
  • 2003
  • Ingår i: Regulatory Peptides. - 1873-1686 .- 0167-0115. ; 113, s. 31-
  • Tidskriftsartikel (refereegranskat)abstract
    • Pituitary adenylate cyclase-activating polypeptide (PACAP) is an islet neuropeptide with potent insulinotropic action. The current study investigates PACAP expression in normal human and rat pancreatic islets, and whether it is altered in diabetic state. To that end, PACAP immunoreactivity was studied by immunofluorescence methods enhanced by the catalyzed reporter deposition (CARD) technique. Insulin and cyclic adenosine monophosphate (cAMP) generation induced by PACAP were investigated in islets isolated from the spontaneously diabetic Goto-Kakizaki (GK) rat. PACAP immunoreactivity was observed in virtually all insulin and glucagon cells in both species, but not in somatostatin or pancreatic polypeptide (PP) cells; this co-localization pattern was unaltered in diabetic pancreata. In normal human pancreas, PACAP was further localized ultrastructurally to the secretory granules of insulin and glucagon cells. PACAP significantly potentiated glucose-stimulated insulin release in isolated islets of normal but not of GK rats. PACAP failed to enhance cAMP generation in normal islets, but induced similar to 5-folds exaggeration in the diabetic islets. In conclusion, using improved immunocytochemistry techniques and electron microscopy (EM), PACAP was shown to be expressed both in normal and diabetic islet cells and localized to secretory granules of insulin and glucagon cells. Furthermore, the insulinotropic action of PACAP was markedly impaired in diabetic islets in spite of exaggerated cAMP response. (C) 2003 Elsevier Science B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy