SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hallström Björn M) srt2:(2016)"

Sökning: WFRF:(Hallström Björn M) > (2016)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, Sunjae, et al. (författare)
  • Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance
  • 2016
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 24:1, s. 172-184
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR.
  •  
2.
  • Edfors, Fredrik, et al. (författare)
  • Gene-specific correlation of RNA and protein levels in human cells and tissues
  • 2016
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.
  •  
3.
  • Butler, L. M., et al. (författare)
  • Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome
  • 2016
  • Ingår i: Cell Systems. - : Cell Press. - 2405-4712. ; 3:3, s. 287-301.e3
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
  •  
4.
  • Djureinovic, Dijana, et al. (författare)
  • Profiling cancer testis antigens in non-small-cell lung cancer
  • 2016
  • Ingår i: JCI INSIGHT. - : American Society for Clinical Investigation. - 2379-3708. ; 1:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
  •  
5.
  • Lahtvee, Petri-Jaan, 1985, et al. (författare)
  • Adaptation to different types of stress converge on mitochondrial metabolism
  • 2016
  • Ingår i: Molecular Biology of the Cell. - : American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 27:15, s. 2505-2514
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism.
  •  
6.
  • Luo, Dan, et al. (författare)
  • Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L.
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:34, s. E5082-E5089
  • Tidskriftsartikel (refereegranskat)abstract
    • The seed oil of Euphorbia lathyris L. contains a series of macrocyclic diterpenoids known as Euphorbia factors. They are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis, a precancerous skin condition. Here, we report an alcohol dehydrogenase-mediated cyclization step in the biosynthetic pathway of Euphorbia factors, illustrating the origin of the intramolecular carbon-carbon bonds present in lathyrane and ingenane diterpenoids. This unconventional cyclization describes the ring closure of the macrocyclic diterpene casbene. Through transcriptomic analysis of E. lathyris L. mature seeds and in planta functional characterization, we identified three enzymes involved in the cyclization route from casbene to jolkinol C, a lathyrane diterpene. These enzymes include two cytochromes P450 from the CYP71 clan and an alcohol dehydrogenase (ADH). CYP71D445 and CYP726A27 catalyze regio-specific 9-oxidation and 5-oxidation of casbene, respectively. When coupled with these P450-catalyzed monooxygenations, E. lathyris ADH1 catalyzes dehydrogenation of the hydroxyl groups, leading to the subsequent rearrangement and cyclization. The discovery of this nonconventional cyclization may provide the key link to complete elucidation of the biosynthetic pathways of ingenol mebutate and other bioactive macrocyclic diterpenoids.
  •  
7.
  • Uhlén, Mathias, et al. (författare)
  • Transcriptomics resources of human tissues and organs
  • 2016
  • Ingår i: Molecular Systems Biology. - : Blackwell Publishing. - 1744-4292 .- 1744-4292. ; 12:4
  • Forskningsöversikt (refereegranskat)abstract
    • Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome-wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome-wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue-restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome-scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy