SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hammenhag Cecilia) srt2:(2020)"

Sökning: WFRF:(Hammenhag Cecilia) > (2020)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ortiz Rios, Rodomiro Octavio, et al. (författare)
  • Oil crops for the future
  • 2020
  • Ingår i: Current Opinion in Plant Biology. - : Elsevier BV. - 1369-5266 .- 1879-0356. ; 56, s. 181-189
  • Forskningsöversikt (refereegranskat)abstract
    • Agriculture faces enormous challenges including the need to substantially increase productivity, reduce environmental footprint, and deliver renewable alternatives that are being addressed by developing new oil crops for the future. The efforts include domestication of Lepidium spp. using genomics-aided breeding as a cold hardy perennial high-yielding oil crop that provides substantial environmental benefits, expands the geography for oil crops, and improves farmers’ economy. In addition, genetic engineering in Crambe abyssinica may lead to a dedicated industrial oil crop to replace fossil oil. Redirection of photosynthates from starch to oil in plant tubers and cereal endosperm also provides a path for enhancing oil production to meet the growing demands for food, fuel, and biomaterials. Insect pheromone components are produced in seed oil plants in a cost-effective and environmentally friendly pest management replacing synthetically produced pheromones. Autophagy is explored for increasing crop fitness and oil accumulation using genetic engineering in Arabidopsis.
  •  
2.
  • Dida, Mulatu Geleta, et al. (författare)
  • High-Density Genetic Linkage Mapping of Lepidium Based on Genotyping-by-Sequencing SNPs and Segregating Contig Tag Haplotypes
  • 2020
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Lepidium campestre has been targeted for domestication as future oilseed and catch crop. Three hundred eighty plants comprising genotypes of L. campestre, Lepidium heterophyllum, and their interspecific F2 mapping population were genotyped using genotyping by sequencing (GBS), and the generated polymorphic markers were used for the construction of high-density genetic linkage map. TASSEL-GBS, a reference genome-based pipeline, was used for this analysis using a draft L. campestre whole genome sequence. The analysis resulted in 120,438 biallelic single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) above 0.01. The construction of genetic linkage map was conducted using MSTMap based on phased SNPs segregating in 1:2:1 ratio for the F2 individuals, followed by genetic mapping of segregating contig tag haplotypes as dominant markers against the linkage map. The final linkage map consisted of eight linkage groups (LGs) containing 2,330 SNP markers and spanned 881 Kosambi cM. Contigs (10,302) were genetically mapped to the eight LGs, which were assembled into pseudomolecules that covered a total of ∼120.6 Mbp. The final size of the pseudomolecules ranged from 9.4 Mbp (LG-4) to 20.4 Mpb (LG-7). The following major correspondence between the eight Lepidium LGs (LG-1 to LG-8) and the five Arabidopsis thaliana (At) chromosomes (Atx-1–Atx-5) was revealed through comparative genomics analysis: LG-1&2_Atx-1, LG-3_Atx-2&3, LG-4_Atx-2, LG-5_Atx-2&Atx-3, LG-6_Atx-4&5, LG-7_Atx-4, and LG-8_Atx-5. This analysis revealed that at least 66% of the sequences of the LGs showed high collinearity with At chromosomes. The sequence identity between the corresponding regions of the LGs and At chromosomes ranged from 80.6% (LG-6) to 86.4% (LG-8) with overall mean of 82.9%. The map positions on Lepidium LGs of the homologs of 24 genes that regulate various traits in A. thaliana were also identified. The eight LGs revealed in this study confirm the previously reported (1) haploid chromosome number of eight in L. campestre and L. heterophyllum and (2) chromosomal fusion, translocation, and inversion events during the evolution of n = 8 karyotype in ancestral species shared by Lepidium and Arabidopsis to n = 5 karyotype in A. thaliana. This study generated highly useful genomic tools and resources for Lepidium that can be used to accelerate its domestication.
  •  
3.
  •  
4.
  • Hammenhag, Cecilia, et al. (författare)
  • QTL mapping for domestication-related characteristics in field cress (Lepidium campestre)—a novel oil crop for the Subarctic region
  • 2020
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestication of a new crop requires identification and improvement of desirable characteristics Field cress (Lepidium campestre) is being domesticated as a new oilseed crop, particularly for northern temperate regions.. In the present study, an F-2 mapping population and its F-3 progenies were used to identify quantitative trait loci (QTLs) for plant height (PH), number of stems per plant (NS), stem growth orientation (SO), flowering habit (FH), earliness (ER), seed yield per plant (SY), pod shattering resistance (SHR), and perenniality (PE). A highly significant correlation (p < 0.001) was observed between several pairs of characteristics, including SY and ER (negative) or ER and PE (positive). The inclusive composite interval mapping approach was used for QTL mapping using 2330 single nucleotide polymorphism (SNP) markers mapped across the eight field cress linkage groups. Nine QTLs were identified with NS, PH, SO, and PE having 3, 3, 2, and 1 QTLs, explaining 21.3%, 29.5%, 3.8%, and 7.2% of the phenotypic variation, respectively. Candidate genes behind three of the QTLs and favorable marker alleles for different classes of each characteristic were identified. Following their validation through further study, the identified QTLs and associated favorable marker alleles can be used in marker-aided breeding to speed up the domestication of field cress.
  •  
5.
  • Tsehay, Sewalem, et al. (författare)
  • New transcriptome-based SNP markers for noug (Guizotia abyssinica) and their conversion to KASP markers for population genetics analyses
  • 2020
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The development and use of genomic resources are essential for understanding the population genetics of crops for their efficient conservation and enhancement. Noug (Guizotia abyssinica) is an economically important oilseed crop in Ethiopia and India. The present study sought to develop new DNA markers for this crop. Transcriptome sequencing was conducted on two genotypes and 628 transcript sequences containing 959 single nucleotide polymorphisms (SNPs) were developed. A competitive allele-specific PCR (KASP) assay was developed for the SNPs and used for genotyping of 24 accessions. A total of 554 loci were successfully genotyped across the accessions, and 202 polymorphic loci were used for population genetics analyses. Polymorphism information content (PIC) of the loci varied from 0.01 to 0.37 with a mean of 0.24, and about 49% of the loci showed significant deviation from the Hardy-Weinberg equilibrium. The mean expected heterozygosity was 0.27 suggesting moderately high genetic variation within accessions. Low but significant differentiation existed among accessions (FST = 0.045, p < 0.0001). Landrace populations from isolated areas may have useful mutations and should be conserved and used in breeding this crop. The genomic resources developed in this study were shown to be useful for population genetics research and can also be used in, e.g., association genetics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy