SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hamon M) srt2:(2010-2014)"

Sökning: WFRF:(Hamon M) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caspi, P., et al. (författare)
  • Synchronous Functional Programming with Lucid Synchrone
  • 2010
  • Ingår i: Modeling and Verification of Real-Time Systems: Formalisms and Software Tools. - London, UK : ISTE. - 9781848210134 ; , s. 207-247
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Dussauze, M., et al. (författare)
  • Lithium Ion Conducting Boron-Oxynitride Amorphous Thin Films: Synthesis and Molecular Structure by Infrared Spectroscopy and Density Functional Theory Modeling
  • 2013
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:14, s. 7202-7213
  • Tidskriftsartikel (refereegranskat)abstract
    • Li ion containing oxynitride amorphous thin films are promising materials for electrochemical applications due to their high ionic conductivity, mechanical stability and chemical durability. Here we report on the preparation of Li boron-oxynitride (LiBON) amorphous thin films by rf sputtering of Li-diborate and Li-pyroborate targets in nitrogen atmosphere. The materials produced were subsequently studied by infrared transmittance spectroscopy assisted by density functional theory calculations using representative Li boron-oxide and boron-oxynitride clusters. The combination of experiments and calculations allows us to propose accurate vibrational assignments and to clarify the complex infrared activity of the LiBON films. Both experimental and calculated spectra show that nitrogen incorporation induces significant structural rearrangements, manifested mainly by a change in boron coordination number from four to three, and by the formation of boron-nitrogen-boron bridges. The nature of boron-nitrogen bonding depends on the composition of the sputtering target, with an exponential relationship adequately describing the dependence of B-N stretching frequency on bond length. Besides bonding to two boron atoms by covalent bonds, the nitrogen atoms interact also with Li ions by participating in their coordination sphere together with oxygen atoms. Likely, boron-nitrogen bonding in LiBON films facilitates Li ion transport due to induced charge delocalization within the boron-nitrogen-boron bridges and reduced electrostatic interaction with the Li ions.
  •  
3.
  •  
4.
  • Roberts, Carol L., et al. (författare)
  • Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens
  • 2013
  • Ingår i: Journal of Nutritional Biochemistry. - : Elsevier. - 0955-2863 .- 1873-4847. ; 24:1, s. 97-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary fibres may have prebiotic effects mediated by promotion of beneficial bacteria. This study explores the possibility that soluble plant fibre may also improve health by inhibiting epithelial adhesion and translocation by pathogenic bacteria. We have focussed on soluble non-starch polysaccharide (NSP) from plantain bananas (Musa spp.) which previous studies showed to be particularly effective at blocking Escherichia coli epithelial adherence. In vitro and ex vivo studies assessed the ability of plantain NSP to inhibit epithelial cell adhesion and invasion of various bacterial pathogens, and to inhibit their translocation through microfold (M)-cells and human Peyers patches mounted in Ussing chambers. Plantain NSP showed dose-related inhibition of epithelial adhesion and M-cell translocation by a range of pathogens. At 5 mg/ml, a concentration readily achievable in the gut lumen, plantain NSP inhibited adhesion to Caco2 cells by Salmonella Typhimurium (85.0 +/- 8.2%, Pandlt;.01), Shigella sonnei (46.6 +/- 29.3%. Pandlt;.01), enterotoxigenic E.coli (56.1 +/- 23.7%, Pandlt;.05) and Clostridium difficile (67.6 +/- 12.3%, Pandlt;.001), but did not inhibit adhesion by enteropathogenic E.coli. Plantain NSP also inhibited invasion of Caco2 cells by S. Typhimurium (80.2 +/- 9.7%) and Sh. sonnei (46.7 +/- 13.4%); Pandlt;.01. Plantain NSP, 5 mg/ml, also inhibited translocation of S. Typhimurium and Sh. sonnei across M-cells by 73.3 +/- 5.2% and 46.4 +/- 7.7% respectively (Pandlt;.05). Similarly, S. Typhimurium translocation across Peyers patches was reduced 65.9 +/- 8.1% by plantain NSP (Pandlt;.01). Soluble plantain fibre can block epithelial adhesion and M-cell translocation of intestinal pathogens. This represents an important novel mechanism by which soluble dietary fibres can promote intestinal health and prevent infective diarrhoea. Crown Copyright
  •  
5.
  • Söder, Lennart, et al. (författare)
  • Experience and challenges with short-term balancing in European systems with large share of wind power
  • 2012
  • Ingår i: IEEE Transactions on Sustainable Energy. - 1949-3029. ; 3:4, s. 853-861
  • Tidskriftsartikel (refereegranskat)abstract
    • The amount of wind power in the world is quickly increasing. The background for this development is improved technology, decreased costs for the units, and increased concern regarding environmental problems of competing technologies such as fossil fuels. Some areas are starting to experience very high penetration levels of wind and there have been many instances when wind power has exceeded 50% of the electrical energy production in some balancing areas. The aims of this paper are to show the increased need for balancing, caused by wind power in the minutes to hourly time scale, and to show how this balancing has been performed in some systems when the wind share was higher than 50%. Experience has shown that this is possible, but that there are some challenges that have to be solved as the amount of wind power increases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy