SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hanlon W.) srt2:(2020-2023)"

Sökning: WFRF:(Hanlon W.) > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abe, H., et al. (författare)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
2.
  • Acharyya, A., et al. (författare)
  • Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 954:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2 degrees .2 away from the best -fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high -flux state in the optical, ultraviolet, X-ray, and GeV ?-ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the ?-ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and ?-ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed ?-ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power.
  •  
3.
  • Kurganskiy, Alexander, et al. (författare)
  • Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Allergic rhinitis is an inflammation in the nose caused by overreaction of the immune system to allergens in the air. Managing allergic rhinitis symptoms is challenging and requires timely intervention. The following are major questions often posed by those with allergic rhinitis: How should I prepare for the forthcoming season? How will the season's severity develop over the years? No country yet provides clear guidance addressing these questions. We propose two previously unexplored approaches for forecasting the severity of the grass pollen season on the basis of statistical and mechanistic models. The results suggest annual severity is largely governed by preseasonal meteorological conditions. The mechanistic model suggests climate change will increase the season severity by up to 60%, in line with experimental chamber studies. These models can be used as forecasting tools for advising individuals with hay fever and health care professionals how to prepare for the grass pollen season.
  •  
4.
  • Brennan, S. J., et al. (författare)
  • Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5642-5665
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
  •  
5.
  • Brennan, S. J., et al. (författare)
  • Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5666-5685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
  •  
6.
  •  
7.
  • Lee, Bruce Y., et al. (författare)
  • Research gaps and opportunities in precision nutrition : an NIH workshop report
  • 2022
  • Ingår i: The American journal of clinical nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 116:6, s. 1877-1900
  • Tidskriftsartikel (refereegranskat)abstract
    • Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.
  •  
8.
  • Rowney, Francis M, et al. (författare)
  • Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health
  • 2021
  • Ingår i: Current Biology. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 31:9, s. 4-2003
  • Tidskriftsartikel (refereegranskat)abstract
    • Grass (Poaceae) pollen is the most important outdoor aeroallergen,1 exacerbating a range of respiratory conditions, including allergic asthma and rhinitis ("hay fever").2-5 Understanding the relationships between respiratory diseases and airborne grass pollen with a view to improving forecasting has broad public health and socioeconomic relevance. It is estimated that there are over 400 million people with allergic rhinitis6 and over 300 million with asthma, globally,7 often comorbidly.8 In the UK, allergic asthma has an annual cost of around US$ 2.8 billion (2017).9 The relative contributions of the >11,000 (worldwide) grass species (C. Osborne et al., 2011, Botany Conference, abstract) to respiratory health have been unresolved,10 as grass pollen cannot be readily discriminated using standard microscopy.11 Instead, here we used novel environmental DNA (eDNA) sampling and qPCR12-15 to measure the relative abundances of airborne pollen from common grass species during two grass pollen seasons (2016 and 2017) across the UK. We quantitatively demonstrate discrete spatiotemporal patterns in airborne grass pollen assemblages. Using a series of generalized additive models (GAMs), we explore the relationship between the incidences of airborne pollen and severe asthma exacerbations (sub-weekly) and prescribing rates of drugs for respiratory allergies (monthly). Our results indicate that a subset of grass species may have disproportionate influence on these population-scale respiratory health responses during peak grass pollen concentrations. The work demonstrates the need for sensitive and detailed biomonitoring of harmful aeroallergens in order to investigate and mitigate their impacts on human health.
  •  
9.
  • Tews, Ingo, et al. (författare)
  • Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives
  • 2022
  • Ingår i: Few-Body Systems. - : Springer Science and Business Media LLC. - 1432-5411 .- 0177-7963. ; 63:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a collection of perspective pieces contributed by the participants of the Institute for Nuclear Theory's Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges ahead, and new ideas and strategies to make progress in nuclear structure and reaction physics, effective field theory, lattice QCD, quantum information, and quantum computing. The contributed pieces solely reflect the perspectives of the respective authors and do not represent the viewpoints of the Institute for Nuclear theory or the organizers of the program.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy