SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hannan Johanna L.) srt2:(2017)"

Sökning: WFRF:(Hannan Johanna L.) > (2017)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hannan, Johanna L., et al. (författare)
  • Impaired contraction and decreased detrusor innervation in a female rat model of pelvic neuropraxia
  • 2017
  • Ingår i: International Urogynecology Journal. - : Springer Science and Business Media LLC. - 0937-3462 .- 1433-3023. ; 28:7, s. 1049-1056
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction and hypothesis: Bilateral pelvic nerve injury (BPNI) is a model of post-radical hysterectomy neuropraxia, a common sequela. This study assessed the time course of changes to detrusor autonomic innervation, smooth muscle (SM) content and cholinergic-mediated contraction post-BPNI. Methods: Female Sprague–Dawley rats underwent BPNI or sham surgery and were evaluated 3, 7, 14, and 30 days post-BPNI (n = 8/group). Electrical field-stimulated (EFS) and carbachol-induced contractions were measured. Gene expression was assessed by qPCR for muscarinic receptor types 2 (M2) and 3 (M3), collagen type 1α1 and 3α1, and SM actin. Western blots measured M2 and M3 protein expression. Bladder sections were stained with Masson’s trichrome for SM content and immunofluorescence staining for nerve terminals expressing vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), and neuronal nitric oxide synthase (nNOS). Results: Bilateral pelvic nerve injury caused larger bladders with less SM content and increased collagen type 1α1 and 3α1 gene expression. At early time points, cholinergic-mediated contraction increased, whereas EFS-mediated contraction decreased and returned to baseline by 30 days. Protein and gene expression of M3 was decreased 3 and 7 days post-BPNI, whereas M2 was unchanged. TH nerve terminals surrounding the detrusor decreased in all BPNI groups, whereas VAChT and nNOS terminals decreased 14 and 30 days post-BPNI. Conclusions: Bilateral pelvic nerve injury increased bladder size, impaired contractility, and decreased SM and autonomic innervation. Therapeutic strategies preventing nerve injury-mediated decline in neuronal input and SM content may prevent the development of a neurogenic bladder and improve quality of life after invasive pelvic surgery.
  •  
2.
  • Matsui, Hotaka, et al. (författare)
  • M1 Macrophages Are Predominantly Recruited to the Major Pelvic Ganglion of the Rat Following Cavernous Nerve Injury
  • 2017
  • Ingår i: Journal of Sexual Medicine. - : Oxford University Press (OUP). - 1743-6095 .- 1743-6109. ; 14:2, s. 187-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Neurogenic erectile dysfunction is a common sequela of radical prostatectomy. The etiology involves injury to the autonomic cavernous nerves, which arise from the major pelvic ganglion (MPG), and subsequent neuroinflammation, which leads to recruitment of macrophages to the injury site. Currently, two macrophage phenotypes are known: neurotoxic M1 macrophages and neuroprotective M2 macrophages. Aim To examine whether bilateral cavernous nerve injury (BCNI) in a rat model of erectile dysfunction would increase recruitment of neurotoxic M1 macrophages to the MPG. Methods Male Sprague-Dawley rats underwent BCNI and the MPG was harvested at various time points after injury. The corpora cavernosa was used to evaluate tissue myographic responses to electrical field stimulation ex vivo. Quantitative real-time polymerase chain reaction was used to examine the gene expression of global macrophage markers, M1 macrophage markers, M2 macrophage markers, and cytokines and chemokines in the MPG. Mathematical calculation of the M1/M2 index was used to quantify macrophage changes temporally. Western blot of MPG tissues was used to evaluate the protein amount of M1 and M2 macrophage markers quantitatively. Immunohistochemistry staining of MPGs for CD68, CD86, and CD206 was used to characterize M1 and M2 macrophage infiltration. Main Outcome Measures Corpora cavernosa responsiveness ex vivo; gene (quantitative real-time polymerase chain reaction) and protein (western blot) expressions of M1 and M2 markers, cytokines, and chemokines; and immunohistochemical localization of M1 and M2 macrophages. Results BCNI impaired the corporal parasympathetic-mediated relaxation response to electrical field stimulation and enhanced the contraction response to electrical field stimulation. Gene expression of proinflammatory (Il1b, Il16, Tnfa, Tgfb, Ccl2, Ccr2) and anti-inflammatory (Il10) cytokines was upregulated in the MPG 48 hours after injury. M1 markers (CD86, inducible nitric oxide synthase, interleukin-1β) and M2 markers (CD206, arginase-1, interleukin-10) were increased after BCNI in the MPG, with the M1/M2 index above 1.0 indicating that more M1 than M2 macrophages were recruited to the MPG. Protein expression of the M1 macrophage marker (inducible nitric oxide synthase) was increased in MPGs after BCNI. However, the protein amount of M2 macrophage markers (arginase-1) remained unchanged. Immunohistochemical characterization demonstrated predominant increases in M1 (CD68+CD86+) macrophages in the MPG after BCNI. Conclusion These results suggest that an increase in M1 macrophage infiltration of the MPG after BCNI is associated with impaired neurogenically mediated erectile tissue physiology ex vivo and thus has significant implications for cavernous nerve axonal repair. Future studies are needed to demonstrate that inhibition of M1 macrophage recruitment prevents erectile dysfunction after CNI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy