SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hansel C. M.) srt2:(2023)"

Search: WFRF:(Hansel C. M.) > (2023)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kirkby, Jasper, et al. (author)
  • Atmospheric new particle formation from the CERN CLOUD experiment
  • 2023
  • In: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 16:11, s. 948-957
  • Journal article (peer-reviewed)abstract
    • Aerosol particles in the atmosphere profoundly influence public health and climate. Ultrafine particles enter the body through the lungs and can translocate to essentially all organs, and they represent a major yet poorly understood health risk. Human activities have considerably increased aerosols and cloudiness since preindustrial times, but they remain persistently uncertain and underrepresented in global climate models. Here we present a synthesis of the current understanding of atmospheric new particle formation derived from laboratory measurements at the CERN CLOUD chamber. Whereas the importance of sulfuric acid has long been recognized, condensable vapours such as highly oxygenated organics and iodine oxoacids also play key roles, together with stabilizers such as ammonia, amines and ions from galactic cosmic rays. We discuss how insights from CLOUD experiments are helping to interpret new particle formation in different atmospheric environments, and to provide a mechanistic foundation for air quality and climate models. The CLOUD experiment provides important insights into new particle formation in different atmospheric environments.
  •  
3.
  • Nie, Wei, et al. (author)
  • NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere
  • 2023
  • In: Nature Communications. - Malmö : IVL Svenska Miljöinstitutet AB. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 – 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization.These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the preindustrial atmosphere, pristine areas, and the upper boundary layer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view