SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansen Birger) srt2:(2005-2009)"

Sökning: WFRF:(Hansen Birger) > (2005-2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elberling, Bo, et al. (författare)
  • Soil and Plant Community Characteristics and Dynamics at Zackenberg
  • 2008
  • Ingår i: High-arctic ecosystem dynamics in a changing climate - Ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland (Advances in Ecological Research). - 0065-2504. - 9780123736659 ; 40, s. 223-248
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Arctic soils hold large amounts of nutrients in the weatherable minerals and the soil organic matter, which slowly decompose. The decomposition processes release nutrients to the plant-available nutrient pool as well as greenhouse gases to the atmosphere. Changes in climatic conditions, for example, changes in the distribution of snow, water balance and the length of the growing season, are likely to affect the complex interactions between plants, abiotic and biotic soil processes as well as the composition of soil micro- and macro-fauna and thereby the overall decomposition rates. These interactions, in turn, will influence soil-plant functioning and vegetation composition in the short as well as in the long term. In this chapter, we report on soils and. plant communities and their distribution patterns in the valley Zackenbergdalen and focus on the detailed investigations within five dominating plant communities. These five communities are located along an ecological gradient in the landscape and are closely related to differences in water availability. They are therefore indirectly formed as a result of the distribution of landforms, redistribution of snow and drainage conditions. Each of the plant communities is closely related to specific nutrient levels and degree of soil development including soil element accumulation and translocation, for example, organic carbon. Results presented here show that different parts of the landscape have responded quite differently to the same overall climate changes the last 10 years and thus, most likely in the future too. Fens represent the wettest sites holding large reactive buried carbon stocks. A warmer climate will cause a permafrost degradation, which most likely will result in anoxic decomposition and increasing methane emissions. However, the net gas emissions at fen sites are sensitive to long-term changes in the water table level. Indeed, increasing maximum active layer depth at fen sites has been recorded together with a decreasing water level at Zackenberg. This is in line with the first signs of increasing extension of grasslands at the expense of fens. In contrast, the most exposed and dry areas have less soil carbon, and decomposition processes are periodically water limited. Here, an increase in air temperatures may increase active layer depth more than at fen sites, but water availability will be critical in determining nutrient cycling and plant production. Field manipulation experiments of increasing temperature, water supply and nutrient addition show that soil-plant interactions are sensitive to these variables. However, additional plant-specific investigations are needed before net effects of climate changes on different landscape and plant communities can be integrated in a landscape context and used to assess the net ecosystem effect of future climate scenarios.
  •  
2.
  • Elberling, Bo, et al. (författare)
  • Arctic vegetation damage by winter-generated coal mining pollution released upon thawing
  • 2007
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 41:7, s. 2407-2413
  • Tidskriftsartikel (refereegranskat)abstract
    • Acid mine drainage (known as AMD) is a well-known environmental problem resulting from the oxidation of sulfidic mine waste. In cold regions, AMD is often considered limited by low temperatures most of the year and observed environmental impact is related to pollution generated during the warm summer period. Here we show that heat generation within an oxidizing, sulfidic, coal-mining waste-rock pile in Svalbard (78 degrees N) is high enough to keep the pile warm (roughly 5 degrees C throughout the year) despite mean annual air temperatures below -5 degrees C. Consequently, weathering processes continue year-round within the waste-rock pile. During the winter, weathering products accumulate within the pile because of a frozen outer layer on the pile and are released as a flush within 2 weeks of soil thawing in the spring. Consequently, spring runoff water contains elevated concentrations of metals. Several of these metals are taken up and accumulated in plants where they reach phytotoxic levels, including aluminum and manganese. Laboratory experiments document that uptake of Al and Mn in native plant species is highly correlated with dissolved concentrations. Therefore, future remedial actions to control the adverse environmental impacts of cold region coal-mining need to pay more attention to winter processes including AMD generation and accumulation of weathering products.
  •  
3.
  • Forchhammer, Mads C., et al. (författare)
  • Zackenberg in a circumpolar context
  • 2008
  • Ingår i: Advances in Ecological Research. - 0065-2504. ; 40, s. 499-544
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Throughout the Northern Hemisphere, changes in local and regional climate conditions are coupled to the recurring and persistent large-scale patterns of pressure and circulation anomalies spanning vast geographical areas, the so-called teleconnection patterns. Indeed, the atmospheric fluctuations described by the North Atlantic Oscillation (NAO) are closely associated with the last four decades of inter-annual variability in local snow and ice conditions observed in the Arctic. Since the NAO has also been connected with changes in the global climate, the behaviour of species, communities and other ecosystem elements at Zackenberg in relation to the NAO enables us to view these in circumpolar and global contexts. Large-scale systems like the NAO constitute the link between the global change and local climate variability to which ecosystem components respond. Here, we place selected ecosystem elements from the monitoring programme Zackenberg Basic presented in previous chapters in a circumpolar context related to NAO-mediated climatic changes. We begin by linking the local variability in winter weather conditions at Zackenberg to fluctuations in the NAO. We then proceed by linking the observed intra- and inter-annual behaviour of selected ecosystem elements to changes in the NAO. The functional ecosystem characteristics in focus are landscape gas exchange dynamics phenological patterns at different trophic levels, consumer-resource dynamics and community stability. The influence of the NAO is presented and discussed in a broader perspective based on information obtained from other arctic localities. The relation between the NAO and the Zackenberg winter weather, is nonlinear, reflecting differential effects of the NAO as the index moves between high and low phases. The inverse hyperbolic relationship found between the NAO and the amount of winter snow was also evident as non-linear response in organisms and systems to inter-annual changes in the NAO. Responses investigated included growth and reproduction in plants and animals, population dynamics and synchrony, inter-trophic interactions and community stability together with system feedback dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy