SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansen Lisbeth) srt2:(2015-2019)"

Sökning: WFRF:(Hansen Lisbeth) > (2015-2019)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ameen, Carly, et al. (författare)
  • Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic
  • 2019
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 286:1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestic dogs have been central to life in the North American Arctic for millennia. The ancestors of the Inuit were the first to introduce the widespread usage of dog sledge transportation technology to the Americas, but whether the Inuit adopted local Palaeo-Inuit dogs or introduced a new dog population to the region remains unknown. To test these hypotheses, we generated mitochondrial DNA and geometric morphometric data of skull and dental elements from a total of 922 North American Arctic dogs and wolves spanning over 4500 years. Our analyses revealed that dogs from Inuit sites dating from 2000 BP possess morphological and genetic signatures that distinguish them from earlier Palaeo-Inuit dogs, and identified a novel mitochondrial clade in eastern Siberia and Alaska. The genetic legacy of these Inuit dogs survives today in modern Arctic sledge dogs despite phenotypic differences between archaeological and modern Arctic dogs. Together, our data reveal that Inuit dogs derive from a secondary pre-contact migration of dogs distinct from Palaeo-Inuit dogs, and probably aided the Inuit expansion across the North American Arctic beginning around 1000 BP.
  •  
2.
  • Berclaz, Corinne, et al. (författare)
  • Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging.
  • 2015
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X.
  • Tidskriftsartikel (refereegranskat)abstract
    • It is generally accepted that structural and functional quantitative imaging of individual islets would be beneficial to elucidate the pathogenesis of type 1 diabetes. We here introduce functional optical coherence imaging (FOCI) for fast, label-free monitoring of beta cell destruction and associated alterations of islet vascularisation.
  •  
3.
  • Felix, Janine F, et al. (författare)
  • Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.
  • 2016
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:2, s. 389-403
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
  •  
4.
  • Fransén-Pettersson, Nina, et al. (författare)
  • A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis
  • 2016
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.
  •  
5.
  • Fransén Pettersson, Nina, et al. (författare)
  • The immunomodulatory quinoline-3-carboxamide paquinimod reverses established fibrosis in a novel mouse model for liver fibrosis
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Quinoline-3-carboxamides (Q substances) are small molecule compounds with anti-inflammatory properties. In this study, we used one of these substances, Paquinimod, to treat a novel model for chronic liver inflammation and liver fibrosis, the NOD-Inflammation Fibrosis (N-IF) mouse. We show that treatment of N-IF mice significantly reduced inflammation and resulted in the regression of fibrosis, even when the treatment was initiated after onset of disease. The reduced disease phenotype was associated with a systemic decrease in the number and reduced activation of disease-promoting transgenic natural killer T (NKT)-II cells and their type 2-cytokine expression profile. Paquinimod treatment also led to a reduction of CD115+ Ly6Chi monocytes and CD11b+ F4/80+ CD206+ macrophages.
  •  
6.
  • Hannibal, Tine D., et al. (författare)
  • Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice
  • 2017
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 60:10, s. 2033-2041
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. Methods: Mice lacking the receptor for IFN-α (IFNAR−/−) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2fl/fl.Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. Results: We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. Conclusions/interpretation: Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.
  •  
7.
  • Hansen, Lisbeth, et al. (författare)
  • E2-2 Dependent Plasmacytoid Dendritic Cells Control Autoimmune Diabetes.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune diabetes is a consequence of immune-cell infiltration and destruction of pancreatic β-cells in the islets of Langerhans. We analyzed the cellular composition of the insulitic lesions in the autoimmune-prone non-obese diabetic (NOD) mouse and observed a peak in recruitment of plasmacytoid dendritic cells (pDCs) to NOD islets around 8-9 weeks of age. This peak coincides with increased spontaneous expression of type-1-IFN response genes and CpG1585 induced production of IFN-α from NOD islets. The transcription factor E2-2 is specifically required for the maturation of pDCs, and we show that knocking out E2-2 conditionally in CD11c+ cells leads to a reduced recruitment of pDCs to pancreatic islets and reduced CpG1585 induced production of IFN-α during insulitis. As a consequence, insulitis has a less aggressive expression profile of the Th1 cytokine IFN-γ and a markedly reduced diabetes incidence. Collectively, these observations demonstrate a disease-promoting role of E2-2 dependent pDCs in the pancreas during autoimmune diabetes in the NOD mouse.
  •  
8.
  • Singh, Tania, et al. (författare)
  • Loss of MafA and MafB expression promotes islet inflammation.
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Maf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas. Transcriptomics analysis showed expression of pro-inflammatory as well as immune cell marker genes. However, clusters of CD4+ T and B220+ B cells were associated primarily with adult MafA-/-MafB+/-, but not MafA-/- islets. MafA expression was detected in the thymus, lymph nodes and bone marrow suggesting a novel role of MafA in regulating immune-cell function. Analysis of pancreatic lymph node cells showed activation of CD4+ T cells, but lack of CD8+ T cell activation which also coincided with an enrichment of naïve CD8+ T cells. Further analysis of T cell marker genes revealed a reduction of T cell receptor signaling gene expression in CD8, but not in CD4+ T cells, which was accompanied with a defect in early T cell receptor signaling in mutant CD8+ T cells. These results suggest that loss of MafA impairs both beta- and T cell function affecting the balance of peripheral immune responses against islet autoantigens, resulting in local inflammation in pancreatic islets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy