SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Anita C) srt2:(2010-2014)"

Sökning: WFRF:(Hansson Anita C) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björk, Karl, et al. (författare)
  • β-Arrestin 2 knockout mice exhibit sensitized dopamine release and increased reward in response to a low dose of alcohol
  • 2013
  • Ingår i: Psychopharmacology. - : Springer. - 0033-3158 .- 1432-2072. ; 230:3, s. 439-449
  • Tidskriftsartikel (refereegranskat)abstract
    • RationaleThe rewarding effects of alcohol have been attributed to interactions between opioid and dopaminergic system within the mesolimbic reward pathway. We have previously shown that ablation of β-arrestin 2 (Arrb2), a crucial regulator of μ-opioid receptor function, attenuates alcohol-induced hyperlocomotion and c-fos activation in the nucleus accumbens.ObjectivesHere, we further investigated the role of Arrb2 in modulating alcohol-induced dopamine (DA) release and conditioned place preference (CPP). We also assessed the functional importance of Arrb2 for μ-opioid receptor surface expression and signaling following an acute alcohol challenge.MethodsAlcohol-evoked (0.375, 0.75, and 1.5 g/kg intraperitoneally) DA release was measured by in vivo microdialysis in the shell of nucleus accumbens. Reward was assessed by the CPP paradigm. Receptor function was assessed by μ-receptor binding and [35S]GTP-γ-S autoradiography.ResultsIn Arrb2 knockout mice accumbal DA levels reach maximum response at a lower dose compared to wild-type (wt) animals. In line with these results, Arrb2 knockout mice display increased CPP for alcohol as compared to wt mice. Finally, Arrb2 mutant mice display increased μ-opioid receptor signaling in the ventral and dorsal striatum and amygdala in response to a low dose of alcohol, indicating impaired desensitization mechanisms in these mice.ConclusionsOur results show that Arrb2 modulates the response to low doses of alcohol on various levels including μ-opioid receptor signaling, DA release, and reward. They also reveal a clear dissociation between the effects of Arrb2 on psychomotor and reward behaviors.
  •  
2.
  • Blom, Elin S, et al. (författare)
  • Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain
  • 2010
  • Ingår i: International journal of Alzheimer's disease. - : Hindawi Limited. - 2090-0252 .- 2090-8024. ; 2011, s. 936580-
  • Tidskriftsartikel (refereegranskat)abstract
    • Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2) and v-myc myelocytomatosis viral oncogene homolog (MYC), were increased in Alzheimer's disease (AD) (P < .05). Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis.
  •  
3.
  • Cippitelli, Andrea, et al. (författare)
  • Neuropeptide Y (NPY) suppresses yohimbine-induced reinstatement of alcohol seeking
  • 2010
  • Ingår i: Psychopharmacology. - : Springer. - 0033-3158 .- 1432-2072. ; 208:3, s. 417-426
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Reinstatement of responding to a previously alcohol-associated lever following extinction is an established model of relapse-like behavior and can be triggered by stress exposure. Here, we examined whether neuropeptide Y (NPY), an endogenous anti-stress mediator, blocks reinstatement of alcohol-seeking induced by the pharmacological stressor yohimbine.MATERIALS AND METHODS: NPY [5.0 or 10.0 mug/rat, intracerebroventricularly (ICV)] dose-dependently blocked the reinstatement of alcohol seeking induced by yohimbine (1.25 mg/kg, i.p.) but failed to significantly suppress the maintenance of alcohol self-administration. We then used c-fos expression mapping to examine neuronal activation following treatment with yohimbine or NPY alone or yohimbine following NPY pre-treatment.RESULTS AND DISCUSSION: The analysis was focused on a network of structures previously implicated in yohimbine-induced reinstatement, comprised of central (CeA) and basolateral (BLA) amygdala and the shell of the nucleus accumbens (Nc AccS). Within this network, both yohimbine and NPY potently induced neuronal activation, and their effects were additive, presumably indicating activation of excitatory and inhibitory neuronal populations, respectively.CONCLUSION: These results suggest that NPY selectively suppresses relapse to alcohol seeking induced by stressful events and support the NPY system as an attractive target for the treatment of alcohol addiction.
  •  
4.
  • Heilig, Markus, et al. (författare)
  • Translating the neuroscience of alcoholism into clinical treatments : from blocking the buzz to curing the blues
  • 2010
  • Ingår i: Neuroscience and Biobehavioral Reviews. - : Elsevier. - 0149-7634 .- 1873-7528. ; 35:2, s. 334-344
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the pathophysiology of addictive disorders is critical for development of new treatments. A major focus of addiction research has for a long time been on systems that mediate acute positively reinforcing effects of addictive drugs, most prominently the mesolimbic dopaminergic (DA) system and its connections. This research line has been successful in shedding light on the physiology of both natural and drug reward, but has not led to therapeutic breakthroughs. The role of classical reward systems is perhaps least clear in alcohol addiction. Here, recent work is summarized that points to some clinically important conclusions. First, important pharmacogenetic differences exist with regard to positively reinforcing effects of alcohol and the ability of this drug to activate classical reward pathways. This offers an opportunity for personalized treatment approaches in alcoholism. Second, brain stress and fear systems become pathologically activated in later stages of alcoholism and their activation is a major influence in escalation of alcohol intake, sensitization of stress responses, and susceptibility to relapse. These findings offer a new category of treatment mechanisms. Corticotropin-releasing hormone (CRH) signaling through CRH1 receptors is a major candidate target in this category, but recent data indicate that antagonists for substance P (SP) neurokinin 1 (NK1) receptors may have a similar potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy