SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Harvey Simon) srt2:(2020-2023)"

Sökning: WFRF:(Harvey Simon) > (2020-2023)

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biermann, Max, 1989, et al. (författare)
  • Lessons learned from the Preem-CCS project – a pioneering Swedish-Norwegian collaboration showcasing the full CCS chain
  • 2022
  • Ingår i: 16th Greenhouse Gas Control Technologies Conference 2022 (GHGT-16).
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the key findings of the Preem-CCS project, a co-funded Swedish-Norwegian R&D collaboration that investigated CO2 capture from the Preem refineries in Sweden, and subsequent ship transport of captured CO2 for permanent storage on the Norwegian Continental Shelf. The project was conducted 2019-2022 and accomplished: 1) the on-site pilot scale demonstration of amine-based CO2 absorption using Aker Carbon Capture’s mobile test unit (MTU), 2) an in-depth investigation of energy-efficient heat supply for CO2 capture, 3) a detailed techno-economic evaluation of a feasible carbon capture and storage (CCS) chain (from CO2 capture in Sweden to ship transport to Norway), and 4) an investigation of relevant legal and regulatory aspects of trans-border CO2 transport between Sweden and Norway.
  •  
2.
  • Biermann, Max, 1989, et al. (författare)
  • Preem CCS - Synthesis of main project findings and insights
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The Preem-CCS project was a Swedish-Norwegian collaboration that investigated CO2 capture from the Preem refineries in Sweden, and subsequent ship transport of captured CO2 for permanent storage on the Norwegian Continental Shelf. The project was conducted from early 2019 to beginning of 2022 and funding was provided by the Norwegian CLIMIT-Demo program via Gassnova, by the Swedish Energy Agency and by the participating industry and research partners (Preem, Aker Carbon Capture, SINTEF Energy Research, Chalmers University of Technology, and Equinor). This report summarizes the key findings of the project activities listed below:   - Pilot-scale testing of CO2 capture at the hydrogen production unit (HPU) at the Lysekil refinery using the Aker Carbon Capture (ACC) mobile test unit (MTU)   - In-depth investigation of energy efficiency opportunities along the CCS chain, including the use of residual heat at the Lysekil refinery site to satisfy the energy requirements for solvent regeneration   - Evaluation of the technical feasibility and cost evaluation of the CCS chain including CO2 capture and transportation by ship to storage facilities off the Norwegian west coast   - Investigation of relevant legal and regulatory aspects related to trans-border CO2 transport and storage and national emissions reduction commitments in Norway and Sweden The report also discusses the next steps towards implementation of CCS at Preem refineries in Lysekil and Gothenburg.
  •  
3.
  • Biermann, Max, 1989, et al. (författare)
  • The role of energy supply in abatement cost curves for CO2 capture from process industry – a case study of a Swedish refinery
  • 2022
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon capture and storage (CCS) activities need to be ramped up to meet the climate crisis. Abatement cost curves help identify low-cost starting points and formulate roadmaps for the implementation of CCS at industrial sites. In this work, we introduce the concept of energy supply cost curves to enhance the usefulness and accuracy of abatement cost curves. We use a multi-period mixed-integer linear program (MILP) to find an optimal mix of heat sources considering the existing site energy system. For a Swedish refinery, we found that residual heat and existing boiler capacities can provide the heat necessary for CCS that avoids more than 75% of the site emissions. Disregarding the existing site energy system and relying on new capacities instead, would lead to capture costs that are 40-57% higher per tonne of CO2-avoided (excl. CO2 liquefaction, transport, and storage). Furthermore, we quantified the impact of temporal variations of heat sources (intermittent residual heat) on the cost and emissions of heat supply to 7-26% and 9-66%, respectively. The conducted optimization of the energy supply mix under consideration of temporal variations leads to detailed estimates of energy supply costs ranging from partial to full CO2 capture, and thus, improve abatement cost curves.
  •  
4.
  • Ahlström, Johan, 1990, et al. (författare)
  • Economic potential for substitution of fossil fuels with liquefied biomethane in Swedish iron and steel industry – Synergy and competition with other sectors
  • 2020
  • Ingår i: Energy Conversion and Management. - : Elsevier Ltd. - 0196-8904 .- 1879-2227. ; 209
  • Tidskriftsartikel (refereegranskat)abstract
    • In Sweden, the iron and steel industry (ISI) is a major source of greenhouse gas (GHG) emissions. Most of the emissions result from the use of fossil reducing agents. Nevertheless, the use of fossil fuels for other purposes must also be eliminated in order to reach the Swedish emissions reduction targets. In this study, we investigate the possibility to replace fossil gaseous and liquid fuels used for heating in the ISI, with liquefied biomethane (LBG) produced through gasification of forest residues. We hypothesize that such utilization of fuels in the Swedish ISI is insufficient to independently drive the development of large-scale LBG production, and that other sectors demanding LBG, e.g., for transportation, can be expected to influence the economic potential for the ISI to switch to LBG. The paper investigates how demand for LBG from other sectors can contribute to, or prevent, a phase-out of fossil fuels used for heating purposes in the ISI under different future energy market scenarios, with additional analysis of the impact of a CO2 emissions charge. A geographically explicit cost-minimizing biofuel production localization model is combined with heat integration and energy market scenario analysis. The results show that from a set of possible future energy market scenarios, none yielded more than a 9% replacement of fossil fuels used for heating purposes in the ISI, and only when there was also a demand for LBG from other sectors. The scenarios corresponding to a more ambitious GHG mitigation policy did not achieve higher adoption of LBG, due to corresponding higher biomass prices. A CO2 charge exceeding 200 EUR/tonCO2 would be required to achieve a full phase-out of fossil fuels used for heating purposes in the ISI. We conclude that with the current policy situation, substitution of fossil fuels by LBG will not be economically feasible for the Swedish ISI.
  •  
5.
  • Andersson, Joakim, 1993- (författare)
  • Non-geological hydrogen storage for fossil-free steelmaking
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the last half-century, global steel use has increased more than threefold and further growth is expected, particularly in developing economies. However, steelmaking is currently responsible for 7% of the global net carbon dioxide (CO2) emissions, and any substantial further optimization of existing processes that utilize fossil fuels for iron ore reduction is infeasible. Therefore, steelmaking must change for climate change mitigation targets to be achievable. Hydrogen (H2) steelmaking using H2 produced via electrolysis is one way forward. A challenge is the substantial electricity demand of electrolysis. H2 storage may lower the electricity cost of electrolysis by allowing a larger share of H2 to be produced when the electricity price is low. Existing experience with large-scale H2 storage is limited to salt caverns and the construction of such caverns requires suitable geological formations, which are neither ubiquitous nor well-distributed. However, geologically-independent H2 storage technologies have not previously been evaluated for integration with H2 steelmaking. This is the aim of this thesis. H2 storage technologies were reviewed and liquid H2 carriers were identified as the most techno-economically feasible non-geological options. Out of these liquid carriers, methanol (CH3OH) was found particularly promising for H2 steelmaking due to the low heat demand of its dehydrogenation, its low-cost storage, and the high technological readiness of plants for both its production and dehydrogenation. A complete CH3OH-based H2 storage concept was developed, including processes for CO2 and heat supply. Its ability to reduce the H2 production cost in a H2 steelmaking process was evaluated via a deterministic optimization method based on historical electricity prices. Results indicate that CH3OH-based storage may be competitive with geological storage options, especially for cases with long-duration electricity price patterns.  The option to also sell off accumulated CH3OH from the storage was investigated. Such steel and CH3OH co-production may improve storage utilization and reduce the risk of investment into H2 storage as it allows for profitability to be reached under a more diverse set of electricity market conditions.
  •  
6.
  • Andersson, Viktor, 1983, et al. (författare)
  • Integration of algae-based biofuel production with an oil refinery: Energy and carbon footprint assessment
  • 2020
  • Ingår i: International Journal of Energy Research. - : Hindawi Limited. - 1099-114X .- 0363-907X. ; 44:13, s. 10860-10877
  • Tidskriftsartikel (refereegranskat)abstract
    • Biofuel production from algae feedstock has become a topic of interest in the recent decades since algae biomass cultivation is feasible in aquaculture and does therefore not compete with use of arable land. In the present work, hydrothermal liquefaction of both microalgae and macroalgae is evaluated for biofuel production and compared with transesterifying lipids extracted from microalgae as a benchmark process. The focus of the evaluation is on both the energy and carbon footprint performance of the processes. In addition, integration of the processes with an oil refinery has been assessed with regard to heat and material integration. It is shown that there are several potential benefits of co-locating an algae-based biorefinery at an oil refinery site and that the use of macroalgae as feedstock is more beneficial than the use of microalgae from a system energy performance perspective. Macroalgae-based hydrothermal liquefaction achieves the highest system energy efficiency of 38.6%, but has the lowest yield of liquid fuel (22.5 MJ per 100 MJalgae) with a substantial amount of solid biochar produced (28.0 MJ per 100 MJalgae). Microalgae-based hydrothermal liquefaction achieves the highest liquid biofuel yield (54.1 MJ per 100 MJalgae), achieving a system efficiency of 30.6%. Macro-algae-based hydrothermal liquefaction achieves the highest CO2 reduction potential, leading to savings of 24.5 resp 92 kt CO2eq/year for the two future energy market scenarios considered, assuming a constant feedstock supply rate of 100 MW algae, generating 184.5, 177.1 and 229.6 GWhbiochar/year, respectively. Heat integration with the oil refinery is only possible to a limited extent for the hydrothermal liquefaction process routes, whereas the lipid extraction process can benefit to a larger extent from heat integration due to the lower temperature level of the process heat demand.
  •  
7.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • Life-cycle impact assessment methods for physical energy scarcity: considerations and suggestions
  • 2021
  • Ingår i: International Journal of Life Cycle Assessment. - : Springer Science and Business Media LLC. - 1614-7502 .- 0948-3349. ; 26:12, s. 2339-2354
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Most approaches for energy use assessment in life cycle assessment do not consider the scarcity of energy resources. A few approaches consider the scarcity of fossil energy resources only. No approach considers the scarcity of both renewable and non-renewable energy resources. In this paper, considerations for including physical energy scarcity of both renewable and non-renewable energy resources in life cycle impact assessment (LCIA) are discussed. Methods: We begin by discussing a number of considerations for LCIA methods for energy scarcity, such as which impacts of scarcity to consider, which energy resource types to include, which spatial resolutions to choose, and how to match with inventory data. We then suggest three LCIA methods for physical energy scarcity. As proof of concept, the use of the third LCIA method is demonstrated in a well-to-wheel assessment of eight vehicle propulsion fuels. Results and discussion: We suggest that global potential physical scarcity can be operationalized using characterization factors based on the reciprocal physical availability for a set of nine commonly inventoried energy resource types. The three suggested LCIA methods for physical energy scarcity consider the following respective energy resource types: (i) only stock-type energy resources (natural gas, coal, crude oil and uranium), (ii) only flow-type energy resources (solar, wind, hydro, geothermal and the flow generated from biomass funds), and (iii) both stock- and flow-type resources by introducing a time horizon over which the stock-type resources are distributed. Characterization factors for these three methods are provided. Conclusions: LCIA methods for physical energy scarcity that provide meaningful information and complement other methods are feasible and practically applicable. The characterization factors of the three suggested LCIA methods depend heavily on the aggregation level of energy resource types. Future studies may investigate how physical energy scarcity changes over time and geographical locations.
  •  
8.
  • Biermann, Max, 1989, et al. (författare)
  • Partial capture from refineries through utilization of existing site energy systems
  • 2021
  • Ingår i: 15th Greenhouse Gas Control Technologies Conference 2021, GHGT 2021. - : Elsevier BV.
  • Konferensbidrag (refereegranskat)abstract
    • Many studies indicate that carbon capture and storage operations need to be ramped up in the coming decades to limit global warming to well-below 2°C. Partial CO2 capture from carbon-intensive industrial processes is a promising starting point for initial CO2 transport and storage infrastructure projects, such as the Norwegian full-chain CCS project “Northern Lights”, since specific capture cost (€/t CO2) for single-stack capture can be kept low compared to full capture from all, often less suitable stacks. This work highlights the importance of utilizing existing site energy systems to avoid significant increase in marginal abatement cost when moving from partial to full capture. A systematic and comprehensive techno-economic approach is applied that identifies a mix of heat supply sources with minimum cost based on a detailed analysis of available heat and capacity within the existing site energy system. Time-dependent variations are considered via multi-period, linear optimization. For single-stack capture from the hydrogen production unit (~0.5 Mt CO2 p.a.) of a Swedish refinery in the context of the current energy system, we find avoidance cost for the capture plant (liquefaction, ship transport, and storage excluded)of 42 €/t CO2-avoided that is predominantly driven by steam raised from available process heat in existing coolers (~6 €/t steam). For full capture from all major stacks (~1.4 Mt CO2 p.a.), the avoidance cost becomes twice as high (86 €/t CO2-avoided) due to heat supply from available heat and existing boiler capacity (combustion of natural gas) at costs of ~20€/t steam. The analysis shows that very few investments in new steam capacity are required, and thus, that the utilization of existing site energy systems is important for lowering capture cost significantly, and thus the whole-chain cost for early CCS projects.
  •  
9.
  • Bokinge, Pontus, et al. (författare)
  • Effects of process decarbonisation on future targets for excess heat delivery from an industrial process plant
  • 2020
  • Ingår i: Eceee Industrial Summer Study Proceedings. - 2001-7987 .- 2001-7979. - 9789198387865 ; 2020-September, s. 233-242
  • Konferensbidrag (refereegranskat)abstract
    • The use of industrial excess heat for purposes such as district heating has the potential to contribute to societal targets for energy efficiency and greenhouse gas emissions reduction. However, to meet the ambitious national and international climate targets set for 2050, a breadth of different decarboni­sation pathways are required, not least in the industrial sector. These include a transition to bio-based and recycled feedstock and fuels, carbon capture and storage, and electrification. Such profound changes of industrial processes and energy systems are likely to affect the availability of excess heat from these plants, and a better understanding of how the excess heat po­tentials might change is needed in order to utilise excess heat in ways that can be resource-efficient also in the long-term. In this paper, we present a systematic approach which can be used to analyse how different decarbonisation options may af­fect the potential future availability of excess heat at a specific plant site. The approach is based on the use of consistent, ener­gy targeting methods based on pinch analysis tools, and there­fore relies on comprehensive data about process heating and cooling demands. To illustrate the approach, we demonstrate results from two industrial case studies in which different de­carbonisation measures are assumed to be implemented. The case studies were selected from a case study portfolio, which includes relevant and site-specific process and energy data for a large share of Swedish industrial process sites. The results show that deep decarbonisation can have significant impact on the availability and temperature profile of industrial excess heat, illustrating the importance of accounting for future pro­cess development when estimating excess heat potentials.
  •  
10.
  • Bokinge, Pontus, et al. (författare)
  • Renewable OME from biomass and electricity—Evaluating carbon footprint and energy performance
  • 2020
  • Ingår i: Energy Science and Engineering. - : Wiley. - 2050-0505. ; 8:7, s. 2587-2598
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd. Renewable drop-in fuels provide a short- to medium-term solution to decreasing carbon dioxide emissions from the transport sector. Polyoxymethylene ethers (OME) are among interesting candidates with production pathways both from biomass (bio-OME) as well as electricity and CO2 (e-OME) proposed. In the present study, both bio- and e-OME production via methanol are assessed for energy performance and carbon footprint. Process integration methods are applied to evaluate synergies from colocating methanol production with further conversion to OME. Even a hybrid process, combing bio- and e-OME production is evaluated. The energy efficiency of bio-OME is considerably higher than for the e-OME pathway, and colocation synergies are more evident for bio-OME. Carbon footprint is evaluated according to EUs recast Renewable Energy Directive (RED II). If renewable electricity and natural gas are used for power and heat supply, respectively, results indicate that all pathways may be counted toward the renewable fuel targets under RED II. The largest emissions reduction is 92.8% for colocated hybrid-OME production. Carbon footprints of e- and hybrid-OME are highly sensitive to the carbon intensity of electricity, and the carbon intensity of the heat supply has a major impact on results for all pathways except colocated bio- and hybrid-OME.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43
Typ av publikation
tidskriftsartikel (24)
konferensbidrag (13)
rapport (4)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (36)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Harvey, Simon, 1965 (38)
Johansson, Lars (1)
Sulo, Gerhard (1)
Hassankhani, Hadi (1)
Liu, Yang (1)
Ali, Muhammad (1)
visa fler...
Mitchell, Philip B (1)
McKee, Martin (1)
Madotto, Fabiana (1)
Abolhassani, Hassan (1)
Rezaei, Nima (1)
Castro, Franz (1)
Koul, Parvaiz A. (1)
Ahlström, Johan (1)
Jansson, Niclas (1)
Weiss, Daniel J. (1)
Bhatt, Deepak L (1)
Simon, Tabassome (1)
Ackerman, Ilana N. (1)
Brenner, Hermann (1)
Chiang, Chern-En (1)
Svanström, Magdalena ... (1)
Podobas, Artur (1)
Persson, Mattias (1)
Arvidsson, Rickard, ... (1)
Ferrara, Giannina (1)
Salama, Joseph S. (1)
Mullany, Erin C. (1)
Abbafati, Cristiana (1)
Bensenor, Isabela M. (1)
Bernabe, Eduardo (1)
Carrero, Juan J. (1)
Cercy, Kelly M. (1)
Zaki, Maysaa El Saye ... (1)
Esteghamati, Alireza (1)
Esteghamati, Sadaf (1)
Fanzo, Jessica (1)
Farzadfar, Farshad (1)
Foigt, Nataliya A. (1)
Grosso, Giuseppe (1)
Islami, Farhad (1)
James, Spencer L. (1)
Khader, Yousef Saleh (1)
Kimokoti, Ruth W. (1)
Kumar, G. Anil (1)
Lallukka, Tea (1)
Lotufo, Paulo A. (1)
Mendoza, Walter (1)
Nagel, Gabriele (1)
Nguyen, Cuong Tat (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (38)
RISE (4)
Uppsala universitet (3)
Luleå tekniska universitet (3)
Kungliga Tekniska Högskolan (2)
Linköpings universitet (1)
visa fler...
Karolinska Institutet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (41)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Teknik (37)
Naturvetenskap (6)
Samhällsvetenskap (4)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy