SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hasegawa Daniel K.) srt2:(2020-2024)"

Sökning: WFRF:(Hasegawa Daniel K.) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
5.
  • Akiyama, Kazunori, et al. (författare)
  • The persistent shadow of the supermassive black hole of M 87: I. Observations, calibration, imaging, and analysis*
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3-3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30 relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5× 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.
  •  
6.
  • Abazajian, Kevork, et al. (författare)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
7.
  • Hwang, K-J, et al. (författare)
  • Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 125:4
  • Tidskriftsartikel (refereegranskat)abstract
    • On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.
  •  
8.
  • Hwang, K. -J, et al. (författare)
  • Microscale Processes Determining Macroscale Evolution of Magnetic Flux Tubes along Earth's Magnetopause
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 914:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An important process affecting solar wind-Earth's magnetosphere coupling is nonsteady dayside magnetic reconnection, observationally evidenced by a flux transfer event (FTE) that shows a bipolar variation of the magnetic field component normal to the magnetopause. FTEs often consist of two interlinked flux tubes, but, local kinetic processes between the flux tubes are not understood in the context of the FTE structuring, evolution, and impact. An FTE observed by the Magnetospheric Multiscale mission on 2017 December 18 consisted of two flux tubes of different topology. One includes field lines with ends connected to the northern and southern hemispheres while the other includes field lines with both ends connected to the magnetosheath. Reconnection occurring at the flux-tube interface indicates how interacting flux tubes evolve into a flux rope with helical magnetic topology that is either closed or open. This study demonstrates a new aspect of how micro- to meso-scale dynamics occurring within FTEs determines their macroscale characteristics and evolution.
  •  
9.
  • Nocerino, E., et al. (författare)
  • Q-dependent electron-phonon coupling induced phonon softening and non-conventional critical behavior in the CDW superconductor LaPt 2 Si 2
  • 2023
  • Ingår i: Journal of Science: Advanced Materials and Devices. - 2468-2284 .- 2468-2179. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the first experimental observation of phonons and their softening on single crystalline LaPt2Si2 via inelastic neutron scattering. From the temperature dependence of the phonon frequency in close proximity to the charge density wave (CDW) q-vector, we obtain a CDW transition temperature of TCDW = 230 K and a critical exponent β = 0.28 ± 0.03. This value is suggestive of a non-conventional critical behavior for the CDW phase transition in LaPt2Si2, compatible with a scenario of CDW discommensuration (DC). The DC would be caused by the existence of two CDWs in this material, propagating separately in the non equivalent (Si1–Pt2–Si1) and (Pt1–Si2–Pt1) layers, respectively, with transition temperatures TCDW−1 = 230 K and TCDW−2 = 110 K. A strong q-dependence of the electron-phonon coupling has been identified as the driving mechanism for the CDW transition at TCDW−1 = 230 K while a CDW with 3-dimensional character, and Fermi surface quasi-nesting as a driving mechanism, is suggested for the transition at TCDW−2 = 110 K. Our results clarify some aspects of the CDW transition in LaPt2Si2 which have been so far misinterpreted by both theoretical predictions and experimental observations and give direct insight into its actual temperature dependence.
  •  
10.
  • Potapov, Anton M., et al. (författare)
  • Global fine-resolution data on springtail abundance and community structure
  • 2024
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy