SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hassler S) "

Sökning: WFRF:(Hassler S)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zouganelis, I., et al. (författare)
  • The Solar Orbiter Science Activity Plan : Translating solar and heliospheric physics questions into action
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
  •  
2.
  •  
3.
  •  
4.
  • Farley, K.A., et al. (författare)
  • In situ radiometric and exposure age dating of the martian surface
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced 3He, 21Ne, and 36Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.
  •  
5.
  •  
6.
  • Witasse, O., et al. (författare)
  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto : Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:8, s. 7865-7890
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116 degrees, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
  •  
7.
  •  
8.
  •  
9.
  • Kjellberg, A, et al. (författare)
  • Hyperbaric oxygen for treatment of long COVID-19 syndrome (HOT-LoCO): protocol for a randomised, placebo-controlled, double-blind, phase II clinical trial
  • 2022
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 12:11, s. e061870-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long COVID-19, where symptoms persist 12 weeks after the initial SARS-CoV-2-infection, is a substantial problem for individuals and society in the surge of the pandemic. Common symptoms are fatigue, postexertional malaise and cognitive dysfunction. There is currently no effective treatment and the underlying mechanisms are unknown, although several hypotheses exist, with chronic inflammation as a common denominator. In prospective studies, hyperbaric oxygen therapy (HBOT) has been suggested to be effective for the treatment of similar syndromes such as chronic fatigue syndrome and fibromyalgia. A case series has suggested positive effects of HBOT in long COVID-19. This randomised, placebo-controlled clinical trial will explore HBOT as a potential treatment for long COVID-19. The primary objective is to evaluate if HBOT improves health-related quality of life (HRQoL) for patients with long COVID-19 compared with placebo/sham. The main secondary objective is to evaluate whether HBOT improves endothelial function, objective physical performance and short-term HRQoL.Methods and analysisA randomised, placebo-controlled, double-blind, phase II clinical trial in 80 previously healthy subjects debilitated due to long COVID-19, with low HRQoL. Clinical data, HRQoL questionnaires, blood samples, objective tests and activity metre data will be collected at baseline. Subjects will be randomised to a maximum of 10 treatments with hyperbaric oxygen or sham treatment over 6 weeks. Assessments for safety and efficacy will be performed at 6, 13, 26 and 52 weeks, with the primary endpoint (physical domains in RAND 36-Item Health Survey) and main secondary endpoints defined at 13 weeks after baseline. Data will be reviewed by an independent data safety monitoring board.Ethics and disseminationThe trial is approved by the Swedish National Institutional Review Board (2021–02634) and the Swedish Medical Products Agency (5.1-2020-36673). Positive, negative and inconclusive results will be published in peer-reviewed scientific journals with open access.Trial registration numberNCT04842448.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy