SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hatziminaoglou E.) srt2:(2010-2014)"

Sökning: WFRF:(Hatziminaoglou E.) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Griffin, M. J., et al. (författare)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
2.
  • Andreani, P., et al. (författare)
  • The European ALMA Regional Centre: a model of user support
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. - 9780819496171 ; 9149, s. Art. no. 91490Y-
  • Konferensbidrag (refereegranskat)abstract
    • The ALMA Regional Centres (ARCs) form the interface between the ALMA observatory and the user community from the proposal preparation stage to the delivery of data and their subsequent analysis. The ARCs provide critical services to both the ALMA operations in Chile and to the user community. These services were split by the ALMA project into core and additional services. The core services are financed by the ALMA operations budget and are critical to the successful operation of ALMA. They are contractual obligations and must be delivered to the ALMA project. The additional services are not funded by the ALMA project and are not contractual obligations, but are critical to achieve ALMA full scientific potential. A distributed network of ARC nodes (with ESO being the central ARC) has been set up throughout Europe at the following seven locations: Bologna, Bonn-Cologne, Grenoble, Leiden, Manchester, Ondrejov, Onsala. These ARC nodes are working together with the central node at ESO and provide both core and additional services to the ALMA user community. This paper presents the European ARC, and how it operates in Europe to support the ALMA community. This model, although complex in nature, is turning into a very successful one, providing a service to the scientific community that has been so far highly appreciated. The ARC could become a reference support model in an age where very large collaborations are required to build large facilities, and support is needed for geographically and culturally diverse communities.
  •  
3.
  • Fathi, Kambiz, et al. (författare)
  • Disc scalelengths out to redshift 5.8
  • 2012
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925. ; 423:1, s. l112-L116
  • Tidskriftsartikel (refereegranskat)abstract
    • We compute the exponential disc scalelength for 686 disc galaxies with spectroscopic redshifts out to redshift 5.8 based on Hubble Space Telescope archival data. We compare the results with our previous measurements based on 30 000 nearby galaxies from the Sloan Digital Sky Survey. Our results confirm the presence of a dominating exponential component in galaxies out to this redshift. At the highest redshifts, the disc scalelength for the brightest galaxies with absolute magnitude between -24 and -22 is up to a factor of 8 smaller compared to that in the local Universe. This observed scalelength decrease is significantly greater than the value predicted by a cosmological picture in which baryonic disc scalelength scales with the virial radius of the dark matter halo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy