SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hawkes N.C.) srt2:(2005-2009)"

Sökning: WFRF:(Hawkes N.C.) > (2005-2009)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • de Vries, P. C., et al. (författare)
  • Effect of toroidal field ripple on the formation of internal transport barriers
  • 2008
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 50:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of a toroidal field (TF) ripple on the formation and performance of internal transport barriers (ITBs) has been studied in JET. It was found that the TF ripple had a profound effect on the toroidal plasma rotation. An increased TF ripple up to delta = 1% led to a lower rotation and reduced the rotational shear in the region where the ITBs were formed. ITB triggering events were observed in all cases and it is thought that the rotational shear may be less important for this process than, for example, the q-profile. However, the increase in the pressure gradient following the ITB trigger was reduced in discharges with a larger TF ripple and consequently a lower rotational shear. This suggests that toroidal rotation and its shear play a role in the growth of the ITB once it has been triggered.
  •  
3.
  • Hawkes, N. C., et al. (författare)
  • Ion transport barrier formation with low injected torque in JET
  • 2007
  • Ingår i: 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts. - 9781622763344 ; , s. 504-507
  • Konferensbidrag (refereegranskat)abstract
    • Ion temperature ITB trigger events have been provoked on JET with very low levels of injected torque using a 3He minority ion heating scheme. The evidence indicates that E x B shear driven by toroidal rotation is not important in these ITB triggers, however the ITBs which form are weak and short lived. Evidence from other experiments [4], suggests that higher torque is necessary to establish and maintain strong ITBs. Future experiments with the increased RF power of the new JET ICRH antenna will be made to explore whether 'strong' ITBs can be created at high power and low applied torque.
  •  
4.
  • Hobirk, J., et al. (författare)
  • Improved confinement in JET hybrid discharges
  • 2009
  • Ingår i: 36th EPS Conference on Plasma Physics 2009, EPS 2009 - Europhysics Conference Abstracts. - 9781622763368 ; , s. 150-153
  • Konferensbidrag (refereegranskat)
  •  
5.
  •  
6.
  • Kuldkepp, Matias, et al. (författare)
  • Accurate polarization measurements with a dual photoelastic modulator
  • 2005
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 44:28, s. 5899-5904
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the polarization effects in multimirror experiments by using a dual photoelastic modulator are described. The effect of single and multiple mirrors in polarization measurements in two and three dimensions is discussed, and experimental results show how symmetrical placement of mirrors in three-dimensional geometry can eliminate changes in the polarization. Calibration procedures for a dual photoelastic modulator and potential error sources such as misalignment of analyzer, signal dc offset, and neglect of aperture size are presented. Mirror-surface evolution and how it can disturb the polarization measurement are also addressed.
  •  
7.
  • Kuldkepp, Matias, et al. (författare)
  • Motional Stark effect diagnostic pilot experiment for MAST
  • 2006
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 77:10, s. 10E905-
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploiting the motional Stark effect (MSE) in the low magnetic fields of spherical tokamaks such as MAST is complicated by the Doppler smearing of the relatively closely spaced Stark components. Extensive modeling of MSE spectra and the subsequent polarized fraction (similar to 20%) of spectrally filtered light and signal to noice ratios have been performed taking account of real experimental conditions including neutral beam parameters, port sizes, optical losses, filter characteristics, etc. A design is selected which uses high throughput interference filters (0.1 nm bandpass ) for separation of the spectral components. An accuracy of similar to 0.5 degrees S compared with typically 15 degrees is estimated for field angle measurements. The design allows for early implementation, starting with a pilot two chord system, and for an economic expansion to a multiplicity of chords. Matching the Doppler shifted D-alpha from the beam neutrals will be accomplished by a combination of filter selection and fine-tuning of the beam voltage. Avoiding filter tuning in the design greatly simplifies the diagnostic. Calibration results of the diagnostic support the calculations.
  •  
8.
  • Litaudon, X., et al. (författare)
  • Development of steady-state scenarios compatible with ITER-like wall conditions
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - 0741-3335 .- 1361-6587. ; 49:12B, s. B529-B550
  • Tidskriftsartikel (refereegranskat)abstract
    • A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q(95) similar to 5 and high triangularity, 3 (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching beta(N) similar to 2 at B(o) similar to 3.1 T. Operating at higher 6 has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At reduced toroidal magnetic field strength, high beta(N) regimes have been achieved and q-profile optimization investigated for use in steady-state scenarios. Values of beta(N) above the 'no-wall magnetohydrodynamic limit' (beta(N) similar to 3.0) have been sustained for a resistive current diffusion time in high-delta configurations (at 1.2 MA/1.8 T). In this scenario, ELM activity has been mitigated by applying magnetic perturbations using error field correction coils to provide ergodization of the magnetic field at the plasma edge. In a highly shaped, quasi-double null X-point configuration, ITBs have been generated on the ion heat transport channel and combined with 'grassy' ELMs with similar to 30 MW of applied heating power (at 1.2 MA/2.7 T, q(95) similar to 7). Advanced algorithms and system identification procedures have been developed with a view to developing simultaneously temperature and q-profile control in real-time. These techniques have so far been applied to the control of the q-profile evolution in JET AT scenarios.
  •  
9.
  • Litaudon, X., et al. (författare)
  • Prospects for steady-state scenarios on JET
  • 2007
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 47:9, s. 1285-1292
  • Tidskriftsartikel (refereegranskat)abstract
    • In the 2006 experimental campaign, progress has been made on JET to operate non-inductive scenarios at higher applied powers (31 MW) and density (n(1) similar to 4 x 10(19) m(-3)), with ITER-relevant safety factor (q(95) similar to 5) and plasma shaping, taking advantage of the new divertor capabilities. The extrapolation of the performance using transport modelling benchmarked on the experimental database indicates that the foreseen power upgrade (similar to 45 MW) will allow the development of non-inductive scenarios where the bootstrap current is maximized together with the fusion yield and not, as in present-day experiments, at its expense. The tools for the long-term JET programme are the new ITER-like ICRH antenna (similar to 15 MW), an upgrade of the NB power (35 MW/20s or 17.5 MW/40s), a new ITER-like first wall, a new pellet injector for edge localized mode control together with improved diagnostic and control capability. Operation with the new wall will set new constraints on non-inductive scenarios that are already addressed experimentally and in the modelling. The fusion performance and driven current that could be reached at high density and power have been estimated using either 0D or 1-1/2D validated transport models. In the high power case (45 MW), the calculations indicate the potential for the operational space of the non-inductive regime to be extended in terms of current (similar to 2.5 MA) and density (n(1) > 5 x 10(19) m(-3)), with high beta(N) (beta(N) > 3.0) and a fraction of the bootstrap current within 60-70% at high toroidal field (similar to 3.5 T).
  •  
10.
  • Lloyd, B., et al. (författare)
  • Overview of physics results from MAST
  • 2007
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 47:10, s. S658-S667
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial advances have been made on the Mega AmpÚre Spherical Tokamak (MAST). The parameter range of the MAST confinement database has been extended and it now also includes pellet-fuelled discharges. Good pellet retention has been observed in H-mode discharges without triggering an ELM or an H/L transition during peripheral ablation of low speed pellets. Co-ordinated studies on MAST and DIII-D demonstrate a strong link between the aspect ratio and the beta scaling of H-mode energy confinement, consistent with that obtained when MAST data were merged with a subset of the ITPA database. Electron and ion ITBs are readily formed and their evolution has been investigated. Electron and ion thermal diffusivities have been reduced to values close to the ion neoclassical level. Error field correction coils have been used to determine the locked mode threshold scaling which is comparable to that in conventional aspect ratio tokamaks. The impact of plasma rotation on sawteeth has been investigated and the results have been well-modelled using the MISHKA-F code. Alfvén cascades have been observed in discharges with reversed magnetic shear. Measurements during off-axis NBCD and heating are consistent with classical fast ion modelling and indicate efficient heating and significant driven current. Central electron Bernstein wave heating has been observed via the O-X-B mode conversion process in special magnetically compressed plasmas. Plasmas with low pedestal collisionality have been established and further insight has been gained into the characteristics of filamentary structures at the plasma edge. Complex behaviour of the divertor power loading during plasma disruptions has been revealed by high resolution infra-red measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy