SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(He Jiawei) srt2:(2024)"

Sökning: WFRF:(He Jiawei) > (2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Chi, et al. (författare)
  • The Energetic Oxygen Ion Beams in the Martian Magnetotail Current Sheets : Hints From the Comparisons Between Two Types of Current Sheets
  • 2024
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 51:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Using data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we explore the plasma properties of Martian magnetotail current sheets (CS), to further understand the solar wind interaction with Mars and ion escape. There are some CS exhibit energetic oxygen ions that show narrow beam structures in the energy spectrum, which primarily occurs in the hemisphere where the solar wind electric field (Esw) is directed away from the planet. On average, these CS have a higher escaping flux than that of the CS without energetic oxygen ion beams, suggesting different roles in ion escape. The CS with energetic oxygen ion beams exhibits different proton and electron properties to the CS without energetic oxygen ion beams, indicating their different origins. Our analysis suggests that the CS with energetic oxygen ion beams may result from the interaction between the penetrated solar wind and localized oxygen ion plumes.
  •  
2.
  • Zhang, Jing, et al. (författare)
  • Understanding the magnetism-ductility trade-off in FeCoMn alloys: The role of the BCC-B2 transition and Mn occupancies
  • 2024
  • Ingår i: Materials & design. - : Elsevier Ltd. - 0264-1275 .- 1873-4197. ; 243
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetism-ductility contradictory relationship presents a significant challenge in the development of magnetic alloys. The impact of the BCC-B2 transition, along with Mn site occupancy, on magnetism and ductility have been investigated by using first-principles calculations. The calculations involved the evaluation of magnetic moments, density of states (DOS), phase stability and ductility of FeCoMn alloys. The results of binary alloys confirm the enhancement of magnetism due to the BCC-B2 transition. Furthermore, the ordering phase transition can strengthen the magnetic interaction between Fe and Mn atoms, which is associated with minimal variations in the density of states of Fe and Mn in the B2 structure. Regarding the ductility of FeCoMn alloys, two factors contribute to increased brittleness. Firstly, the increased covalent component in bonding, as a result of the strong hybridization between different elements, leads to an increased brittleness. Secondly, the increased Peierls stress provides a larger resistance to dislocation motion, which also contributes to the increased brittleness. Finally, the Pearson correlation coefficients and data analysis indicate that VEC, spin polarizations and Mn content provide major contributions to the contradictory relationship between magnetism and ductility.
  •  
3.
  • Zhang, Jing, et al. (författare)
  • Unraveling the role of the BCC-B2 transition and V occupancies in the contradictory magnetism-ductility relationship of FeCoV alloys
  • 2024
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 997
  • Tidskriftsartikel (refereegranskat)abstract
    • The contradictory relationship between magnetism and ductility restricts further applications of FeCoV alloys in high-performance electrical machines. The role of the BCC-B2 transition, accompanied by vanadium (V) site occupancies, in magnetic moments and ductility has been explored using first-principles calculations. The variations in magnetism and ductility of FeCoV alloys are attributed to the coupling of the BCC-B2 transition and V occupancies. When V replaces Fe atoms in the equiatomic B2-FeCo alloy, the superior magnetism observed in B2-Fe50-cCo50Vc alloys is a consequence of the enhanced local magnetic moment of Fe and the ferrimagnetic-ferromagnetic transition in the magnetic state. Moreover, due to the preferential V occupancy in the B2 phase, the B2-Fe46Co50V4 alloy exhibits comparable ductility to the BCC-Fe50Co46V4 alloy. The results indicate that the increased brittleness in the B2 phase arises from the raised Peierls stress and the enhanced covalent component in interatomic bonding, which is caused by the strong hybridization between Fe and Co atoms. Pearson correlation analysis illustrates that valence electron concentration (VEC) and V content are significant factors in the contradictory relationship between magnetization and ductility. The theoretical results demonstrate that tuning the V content and atomic occupancies is helpful to achieve a trade-off between magnetization and ductility in B2-FeCoV alloys.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy