SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(He Qingquan)
 

Sökning: WFRF:(He Qingquan) > (2020) > Carbon-Decorated Fe...

Carbon-Decorated Fe3S4-Fe7Se8 Hetero-Nanowires: Interfacial Engineering for Bifunctional Electrocatalysis Toward Hydrogen and Oxygen Evolution Reactions

Le, Thanh-Tung (författare)
Shanghai Univ, Peoples R China
Huang, Shoushuang (författare)
Shanghai Univ, Peoples R China
Ning, Ping (författare)
Shanghai Univ, Peoples R China
visa fler...
Wang, Wenwen (författare)
Shanghai Univ, Peoples R China
Wang, Qing (författare)
Shanghai Univ, Peoples R China
Jiang, Yong (författare)
Shanghai Univ, Peoples R China
He, Qingquan (författare)
Shanghai Univ, Peoples R China
Feng, Jialiang (författare)
Shanghai Univ, Peoples R China
Hu, Zhang-Jun (författare)
Linköpings universitet,Molekylär ytfysik och nanovetenskap,Tekniska fakulteten,Shanghai Univ, Peoples R China
Chen, Zhiwen (författare)
Shanghai Univ, Peoples R China
visa färre...
 (creator_code:org_t)
2020-04-17
2020
Engelska.
Ingår i: Journal of the Electrochemical Society. - : ELECTROCHEMICAL SOC INC. - 0013-4651 .- 1945-7111. ; 167:8
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The design and synthesis of complex multi-component heterostructures is an effective strategy to fabricate cost-efficient catalysts for electrochemical water splitting. Herein, one-dimensional porous Fe3S4-Fe7Se8 heterostructured nanowires confined in carbon (Fe3S4-Fe7Se8@C) were synthesized via the selenization of Fe-based organic-inorganic nanowires. Benefiting from the merits of morphology, composition and surface structure characteristics, i.e., the high structural void porosity, the direct electrical pathways of nanowire topology and the conductive carbon layer coating, the titled catalyst not only offered a larger accessible electrocatalytic interface but also facilitated diffusion of the electrolyte and gas. Moreover, the electron redistribution at the Fe3S4-Fe7Se8 heterojunction interfaces reduced the adsorption free-energy barriers on the active sites, endowing the catalysts with faster reaction kinetics and improved electrocatalytic activity. Accordingly, the optimal Fe3S4-Fe7Se8@C produced a low hydrogen evolution reaction overpotential of 124 mV at 10 mA cm (-2) with a Tafel slope of 111.2 mV dec(-1), and an ultralow oxygen evolution reactions overpotential of 219 mV at 20 mA cm (-2 ), respectively. When applied as both anode and cathode for overall water splitting, a low battery voltage of 1.67 V was achieved along with excellent stability for at least 12 h. The work presented here offered a feasible scheme to fabricate non-noble metal-based electrocatalysts for water splitting. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.

Ämnesord

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy