SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(He Ying) srt2:(2020-2024)"

Sökning: WFRF:(He Ying) > (2020-2024)

  • Resultat 1-10 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • He, Wang, et al. (författare)
  • Fast Power Density Assessment of 5G Mobile Handset Using Equivalent Currents Method
  • 2021
  • Ingår i: IEEE Transactions on Antennas and Propagation. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-926X .- 1558-2221. ; 69:10, s. 6857-6869
  • Tidskriftsartikel (refereegranskat)abstract
    • As the fifth-generation (5G) mobile communication is utilizing millimeter-wave (mmWave) frequency bands, electromagnetic field (EMF) exposure emitted from a 5G mmWave mobile handset should be evaluated and compliant with the relevant EMF exposure limits in terms of peak spatial-average incident power density (PD). In this work, a fast PD assessment method for a 5G mmWave mobile handset using the equivalent current (EQC) method is proposed. The EQC method utilizes the intermediate-field (IF) data collected by a spherical measurement system to reconstruct the EQCs over a reconstruction surface and then computes the PD in close proximity of the mobile handset with acceptable accuracy. The performance of the proposed method is evaluated using a mmWave mobile handset mock-up equipped with four quasi-Yagi antennas. The assessed PD results are compared with those computed using full-wave simulations and also those measured with a planar near-field (NF) scanning system. In addition, three influencing factors related to the accuracy of the EQC method, namely, the angular resolution, the phase error, and the handset position in the IF measurements, are also analyzed. The proposed method is a good candidate for fast PD assessment of EMF exposure compliance testing in the mmWave frequency range.
  •  
4.
  • He, Wang, et al. (författare)
  • Implications of Incident Power Density Limits on Power and EIRP Levels of 5G Millimeter-Wave User Equipment
  • 2020
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 8, s. 148214-148225
  • Tidskriftsartikel (refereegranskat)abstract
    • User equipment (UE) is required to comply with the relevant radio frequency (RF) electromagnetic field (EMF) exposure limits, which are of relevance to establish the maximum permissible transmitted power and the maximum equivalent isotropically radiated power (EIRP). Recently, international RF EMF exposure guidelines, such as those published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) as well as by the IEEE, have been updated. In this paper, the implications of the revised incident power density limits are investigated in terms of maximum permissible transmitted power and the maximum EIRP for devices operating in close proximity of the user. A similar analysis is conducted according to the US Federal Communications Commission (FCC) regulation on RF exposure. EMF compliance of UE is studied by means of numerical modelling of patch antenna arrays of different array sizes taking into consideration of possible beam-steering operations, at frequencies ranging from 10 GHz to 100 GHz. The results are compared with the 3rd Generation Partnership Project (3GPP) requirements on the total radiated power (TRP) and EIRP levels. The present implications of the incident power density limits for 5G millimeter-wave UE will give valuable insights to mobile equipment manufacturers, network operators, and standardization bodies.
  •  
5.
  • Li, Doudou, et al. (författare)
  • Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes : an umbrella review and updated meta-analysis
  • 2022
  • Ingår i: American Journal of Clinical Nutrition. - : Oxford University Press. - 0002-9165 .- 1938-3207. ; 116:1, s. 230-243
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced from dietary nutrients. Many studies have discovered that circulating TMAO concentrations are linked to a wide range of health outcomes.Objectives: This study aimed to summarize health outcomes related to circulating TMAO concentrations.Methods: We searched the Embase. Medline, Web of Science, and Scopus databases from inception to 15 February, 2022 to identify and update meta-analyses examining the associations between 'TAO and multiple health outcomes. For each health outcome, we estimated the summary effect size. 95% prediction CI. between-study heterogeneity. evidence of small-study effects, and evidence of excess-significance bias. These metrics were used to evaluate the evidence credibility of the identified associations.Results: This umbrella review identified 24 meta-analyses that investigated the association between circulating 'TAO concentrations and health outcomes including all-cause mortality, cardiovascular diseases (CVDs), diabetes mellitus (DM), cancer. and renal function. We updated these meta-analyses by including a total of 82 individual studies on 18 unique health outcomes. Among them, 14 associations were nominally significant. After evidence credibility assessment, we found 6 (33%) associations (i.e., all-cause mortality, CVD mortality, major adverse cardiovascular events, hypertension. DM, and glomerular filtration rate) to present highly suggestive evidence.Conclusions: TMAO might be a novel biomarker related to human health conditions including all-cause mortality, hypertension. CVD, DM. cancer, and kidney function. Further studies are needed to investigate whether circulating 'MAO concentrations could be an intervention target for chronic disease.
  •  
6.
  • Wang, Fang, et al. (författare)
  • Emerging contaminants: A One Health perspective
  • 2024
  • Ingår i: Innovation. - 2666-6758. ; 5
  • Forskningsöversikt (refereegranskat)abstract
    • Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
  •  
7.
  • Yu, Wenjin, et al. (författare)
  • Deep Learning-Based Classification of Cancer Cell in Leptomeningeal Metastasis on Cytomorphologic Features of Cerebrospinal Fluid
  • 2022
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: It is a critical challenge to diagnose leptomeningeal metastasis (LM), given its technical difficulty and the lack of typical symptoms. The existing gold standard of diagnosing LM is to use positive cerebrospinal fluid (CSF) cytology, which consumes significantly more time to classify cells under a microscope.Objective: This study aims to establish a deep learning model to classify cancer cells in CSF, thus facilitating doctors to achieve an accurate and fast diagnosis of LM in an early stage.Method: The cerebrospinal fluid laboratory of Xijing Hospital provides 53,255 cells from 90 LM patients in the research. We used two deep convolutional neural networks (CNN) models to classify cells in the CSF. A five-way cell classification model (CNN1) consists of lymphocytes, monocytes, neutrophils, erythrocytes, and cancer cells. A four-way cancer cell classification model (CNN2) consists of lung cancer cells, gastric cancer cells, breast cancer cells, and pancreatic cancer cells. Here, the CNN models were constructed by Resnet-inception-V2. We evaluated the performance of the proposed models on two external datasets and compared them with the results from 42 doctors of various levels of experience in the human-machine tests. Furthermore, we develop a computer-aided diagnosis (CAD) software to generate cytology diagnosis reports in the research rapidly.Results: With respect to the validation set, the mean average precision (mAP) of CNN1 is over 95% and that of CNN2 is close to 80%. Hence, the proposed deep learning model effectively classifies cells in CSF to facilitate the screening of cancer cells. In the human-machine tests, the accuracy of CNN1 is similar to the results from experts, with higher accuracy than doctors in other levels. Moreover, the overall accuracy of CNN2 is 10% higher than that of experts, with a time consumption of only one-third of that consumed by an expert. Using the CAD software saves 90% working time of cytologists.Conclusion: A deep learning method has been developed to assist the LM diagnosis with high accuracy and low time consumption effectively. Thanks to labeled data and step-by-step training, our proposed method can successfully classify cancer cells in the CSF to assist LM diagnosis early. In addition, this unique research can predict cancer’s primary source of LM, which relies on cytomorphologic features without immunohistochemistry. Our results show that deep learning can be widely used in medical images to classify cerebrospinal fluid cells. For complex cancer classification tasks, the accuracy of the proposed method is significantly higher than that of specialist doctors, and its performance is better than that of junior doctors and interns. The application of CNNs and CAD software may ultimately aid in expediting the diagnosis and overcoming the shortage of experienced cytologists, thereby facilitating earlier treatment and improving the prognosis of LM.
  •  
8.
  • Zhang, Zhi, et al. (författare)
  • Customized Structural Color Filters by Pixel-Level Electrothermal Regulation
  • 2023
  • Ingår i: Laser & Photonics reviews. - : Wiley. - 1863-8880 .- 1863-8899. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Reflective structural colors have backlight-free supremacy and can provide energy-efficient and environmental-friendly color production for many applications. However, they are hindered by the complex process and incorrect colors after fabrication. Here, a pixelated electrothermal oxidation technique is proposed that can precisely tailor and produce reflective structural colors covering the entire visible range, providing the possibility for customized structural color filter arrays from a titanium canvas. Furthermore, as a demonstration, a photonic-firework-like color filter array is achieved in a single step via thermal engineering. Based on this one-step-forming color array, a computational spectrometer is also realized featuring a resolvability of 10 nm and operating bandwidth covering the whole visible range. Considering its compactness and mass production capability, this method has numerous potential applications in, e.g., imaging, anti-counterfeiting, printing, color display, and spectroscopy.
  •  
9.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
10.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 55

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy