SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(He Yixin) srt2:(2020)"

Sökning: WFRF:(He Yixin) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Li, Yuling, et al. (författare)
  • Bilateral Teleoperation of Multiple Robots under Scheduling Communication
  • 2020
  • Ingår i: IEEE Transactions on Control Systems Technology. - 1063-6536. ; 28:5, s. 1770-1784
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, bilateral teleoperation of multiple slaves coupled to a single master under scheduling communication is investigated. The sampled-data transmission between the master and the multiple slaves is fulfilled over a delayed communication network, and at each sampling instant, only one slave is allowed to transmit its current information to the master side according to some scheduling protocols. To achieve the master-slave synchronization, round-robin (RR) scheduling protocol and try-once-discard (TOD) scheduling protocol are employed, respectively. By designing a scheduling-communication-based controller, some sufficient stability criteria related to the controller gain matrices, sampling intervals, and communication delays are obtained for the closed-loop teleoperation system under the RR and TOD scheduling protocols, respectively. Finally, simulation studies are given to validate the effectiveness of the proposed results.
  •  
3.
  • Zhang, Zhao Yang, et al. (författare)
  • Photochemical Phase Transitions Enable Coharvesting of Photon Energy and Ambient Heat for Energetic Molecular Solar Thermal Batteries That Upgrade Thermal Energy
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 142:28, s. 12256-12264
  • Tidskriftsartikel (refereegranskat)abstract
    • Discovering physicochemical principles for simultaneous harvesting of multiform energy from the environment will advance current sustainable energy technologies. Here we explore photochemical phase transitions - a photochemistry-thermophysics coupled regime - for coharvesting of solar and thermal energy. In particular, we show that photon energy and ambient heat can be stored together and released on demand as high-temperature heat, enabled by room-temperature photochemical crystal↔liquid transitions of engineered molecular photoswitches. Integrating the two forms of energy in single-component molecular materials is capable of providing energy capacity beyond that of traditional solar or thermal energy storage systems based solely on molecular photoisomerization or phase change, respectively. Significantly, the ambient heat that is harvested during photochemical melting into liquid of the low-melting-point, metastable isomer can be released as high-temperature heat by recrystallization of the high-melting-point, parent isomer. This reveals that photon energy drives the upgrading of thermal energy in such a hybrid energy system. Rationally designed small-molecule azo switches achieve high gravimetric energy densities of 0.3-0.4 MJ/kg with long-term storage stability. Rechargeable solar thermal battery devices are fabricated, which upon light triggering provide gravimetric power density of about 2.7 kW/kg and temperature increases of >20 °C in ambient environment. We further show their use as deicing coatings. Our work demonstrates a new concept of energy utilization - combining solar energy and low-grade heat into higher-grade heat - which unlocks the possibility of developing sustainable energy systems powered by a combination of natural sunlight and ambient heat.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy