SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heather A. J) srt2:(2002-2004)"

Sökning: WFRF:(Heather A. J) > (2002-2004)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Quintero, E M, et al. (författare)
  • Glial cell line-derived neurotrophic factor is essential for neuronal survival in the locus coeruleus-hippocampal noradrenergic pathway.
  • 2004
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522. ; 124:1, s. 137-46
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been shown that the noradrenergic (NE) locus coeruleus (LC)-hippocampal pathway plays an important role in learning and memory processing, and that the development of this transmitter pathway is influenced by neurotrophic factors. Although some of these factors have been discovered, the regulatory mechanisms for this developmental event have not been fully elucidated. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor influencing LC-NE neurons. We have utilized a GDNF knockout animal model to explore its function on the LC-NE transmitter system during development, particularly with respect to target innervation. By transplanting various combinations of brainstem (including LC) and hippocampal tissues from wildtype or GDNF knockout fetuses into the brains of adult wildtype mice, we demonstrate that normal postnatal development of brainstem LC-NE neurons is disrupted as a result of the GDNF null mutation. Tyrosine hydroxylase immunohistochemistry revealed that brainstem grafts had markedly reduced number and size of LC neurons in transplants from knockout fetuses. NE fiber innervation into the hippocampal co-transplant from an adjacent brainstem graft was also influenced by the presence of GDNF, with a significantly more robust innervation observed in transplants from wildtype fetuses. The most successful LC/hippocampal co-grafts were generated from fetuses expressing the wildtype GDNF background, whereas the most severely affected transplants were derived from double transplants from null-mutated fetuses. Our data suggest that development of the NE LC-hippocampal pathway is dependent on the presence of GDNF, most likely through a target-derived neurotrophic function.
  •  
2.
  • Griffith, May, et al. (författare)
  • Artificial human corneas - Scaffolds for transplantation and host regeneration
  • 2002
  • Ingår i: Cornea. - : Lippincott, Williams andamp; Wilkins. - 0277-3740 .- 1536-4798. ; 21:7, s. S54-S61
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose. To review the development of artificial corneas (prostheses and tissue equivalents) for transplantation, and to provide recent updates on our tissue-engineered replacement corneas. Methods. Modified natural polymers and synthetic polymers were screened for their potential to replace damaged portions of the human cornea or the entire corneal thickness. These polymers, combined with cells derived from each of the three main corneal layers or stem cells, were used to develop artificial corneas. Functional testing was performed in vitro. Trials of biocompatibility and immune and inflammatory reactions were performed by implanting the most promising polymers into rabbit corneas. Results. Collagen-based biopolymers, combined with synthetic crosslinkers or copolymers, formed effective scaffolds for developing prototype artificial corneas that could be used as tissue replacements in the future. We have previously developed an artificial cornea that mimicked key morphologic and functional properties of the human cornea. The addition of synthetic polymers increased its toughness as it retained transparency and low light scattering, making the matrix scaffold more suitable for transplantation. These new composites were implanted into rabbits without causing any acute inflammation or immune response. We have also fabricated full-thickness composites that can be fully sutured. However, the long-term effects of these artificial corneas need to be evaluated. Conclusions. Novel tissue-engineered corneas that comprise composites of natural and synthetic biopolymers together with corneal cell lines or stem cells will, in the future, replace portions of the cornea that are damaged. Our results provide a basis for the development of both implantable temporary and permanent corneal replacements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy