SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hebeler K.) srt2:(2020)"

Sökning: WFRF:(Hebeler K.) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Greif, S. K., et al. (författare)
  • Equation of State Constraints from Nuclear Physics, Neutron Star Masses, and Future Moment of Inertia Measurements
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 901:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore constraints on the equation of state (EOS) of neutron-rich matter based on microscopic calculations up to nuclear densities and observations of neutron stars. In a previous work we showed that predictions based on modern nuclear interactions derived within chiral effective field theory and the observation of two-solar-mass neutron stars result in a robust uncertainty range for neutron star radii and the EOS over a wide range of densities. In this work we extend this study, employing both the piecewise polytrope extension from Hebeler et al. as well as the speed of sound model of Greif et al., and show that moment of inertia measurements of neutron stars can significantly improve the constraints on the EOS and neutron star radii.
  •  
2.
  • Demol, P., et al. (författare)
  • Improved many-body expansions from eigenvector continuation
  • 2020
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 101:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum many-body theory has witnessed tremendous progress in various fields, ranging from atomic and solid-state physics to quantum chemistry and nuclear structure. Due to the inherent computational burden linked to the ab initio treatment of microscopic fermionic systems, it is desirable to obtain accurate results through low-order perturbation theory. In atomic nuclei, however, effects such as strong short-range repulsion between nucleons can spoil the convergence of the expansion and make the reliability of perturbation theory unclear. Mathematicians have devised an extensive machinery to overcome the problem of divergent expansions by making use of so-called resummation methods. In large-scale many-body applications, such schemes are often of limited use since no a priori analytical knowledge of the expansion is available. We present here eigenvector continuation as an alternative resummation tool that is both efficient and reliable because it is based on robust and simple mathematical principles.
  •  
3.
  • Koenig, S., et al. (författare)
  • Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification
  • 2020
  • Ingår i: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 810
  • Tidskriftsartikel (refereegranskat)abstract
    • First principles calculations of atomic nuclei based on microscopic nuclear forces derived from chiral effective field theory (EFT) have blossomed in the past years. A key element of such ab initio studies is the understanding and quantification of systematic and statistical errors arising from the omission of higher-order terms in the chiral expansion as well as the model calibration. While there has been significant progress in analyzing theoretical uncertainties for nucleon-nucleon scattering observables, the generalization to multi-nucleon systems has not been feasible yet due to the high computational cost of evaluating observables for a large set of low-energy couplings. In this Letter we show that a new method called eigenvector continuation (EC) can be used for constructing an efficient and accurate emulator for nuclear many-body observables, thereby enabling uncertainty quantification in multi-nucleon systems. We demonstrate the power of EC emulation with a proof-of-principle calculation that lays out all correlations between bulk ground-state observables in the few-nucleon sector. On the basis of ab initio calculations for the ground-state energy and radius in 4 He, we demonstrate that EC is more accurate and efficient compared to established methods like Gaussian processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy