SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hebrard E.) srt2:(2015-2019)"

Sökning: WFRF:(Hebrard E.) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Cabrera, J., et al. (författare)
  • Transiting exoplanets from the CoRoT space mission: XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • © ESO, 2015. Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims. We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods. We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, vsini) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results. We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions. These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29.
  •  
3.
  • Bonomo, A. S., et al. (författare)
  • A deeper view of the CoRoT-9 planetary system A small non-zero eccentricity for CoRoT-9b likely generated by planet-planet scattering
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 603, s. A43-
  • Tidskriftsartikel (refereegranskat)abstract
    • CoRoT-9b is one of the rare long-period (P = 95 : 3 days) transiting giant planets with a measured mass known to date. We present a new analysis of the CoRoT-9 system based on five years of radial-velocity (RV) monitoring with HARPS and three new space-based transits observed with CoRoT and Spitzer. Combining our new data with already published measurements we redetermine the CoRoT-9 system parameters and find good agreement with the published values. We uncover a higher significance for the small but non-zero eccentricity of CoRoT-9b (e = 0 : 133(-0.037)(+0.042)) and find no evidence for additional planets in the system. We use simulations of planet-planet scattering to show that the eccentricity of CoRoT-9b may have been generated by an instability in which a similar to 50 M-circle plus planet was ejected from the system. This scattering would not have produced a spin-orbit misalignment, so we predict that the CoRoT-9b orbit should lie within a few degrees of the initial plane of the protoplanetary disk. As a consequence, any significant stellar obliquity would indicate that the disk was primordially tilted.
  •  
4.
  • Csizmadia, S., et al. (författare)
  • Transiting exoplanets from the CoRoT space mission XXVIII. CoRoT-33b, an object in the brown dwarf desert with 2:3 commensurability with its host star
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of a rare transiting brown dwarf with a mass of 59 M-Jup and radius of 1.1 R-Jup around the metal-rich, [Fe/H] = +0.44, G9V star CoRoT-33. The orbit is eccentric (e = 0.07) with a period of 5.82 d. The companion, CoRoT-33b, is thus a new member in the so-called brown dwarf desert. The orbital period is within 3% to a 3:2 resonance with the rotational period of the star. CoRoT-33b may be an important test case for tidal evolution studies. The true frequency of brown dwarfs close to their host stars (P
  •  
5.
  • Deleuil, M., et al. (författare)
  • Planets, candidates, and binaries from the CoRoT/Exoplanet programme: The CoRoT transit catalogue
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • The CoRoT space mission observed 163 665 stars over 26 stellar fields in the faint star channel. The exoplanet teams detected a total of 4123 transit-like features in the 177 454 light curves. We present the complete re-analysis of all these detections carried out with the same softwares so that to ensure their homogeneous analysis. Although the vetting process involves some human evaluation, it also involves a simple binary flag system over basic tests: Detection significance, presence of a secondary, difference between odd and even depths, colour dependence, V-shape transit, and duration of the transit. We also gathered the information from the large accompanying ground-based programme carried out on the planet candidates and checked how useful the flag system could have been at the vetting stage of the candidates. From the initial list of transit-like features, we identified and separated 824 false alarms of various kind, 2269 eclipsing binaries among which 616 are contact binaries and 1653 are detached ones, 37 planets and brown dwarfs, and 557 planet candidates. We provide the catalogue of all these transit-like features, including false alarms. For the planet candidates, the catalogue gives not only their transit parameters but also the products of their light curve modelling: Reduced radius, reduced semi-major axis, and impact parameter, together with a summary of the outcome of follow-up observations when carried out and their current status. For the detached eclipsing binaries, the catalogue provides, in addition to their transit parameters, a simple visual classification. Among the planet candidates whose nature remains unresolved, we estimate that eight (within an error of three) planets are still to be identified. After correcting for geometric and sensitivity biases, we derived planet and brown dwarf occurrences and confirm disagreements with Kepler estimates, as previously reported by other authors from the analysis of the first runs: Small-size planets with orbital period less than ten days are underabundant by a factor of three in the CoRoT fields whereas giant planets are overabundant by a factor of two. These preliminary results would however deserve further investigations using the recently released CoRoT light curves that are corrected of the various instrumental effects and a homogeneous analysis of the stellar populations observed by the two missions.
  •  
6.
  • Porter, Richard T. J., et al. (författare)
  • Techno-economic assessment of CO2 quality effect on its storage and transport : CO(2)QUEST An overview of aims, objectives and main findings
  • 2016
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836 .- 1878-0148. ; 54, s. 662-681
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper provides an overview of the aims, objectives and the main findings of the CO(2)QUEST FP7 collaborative project, funded by the European Commission and designed to address the fundamentally important and urgent issues regarding the impact of the typical impurities in CO2 streams captured from fossil fuel power plants and other CO2 intensive industries on their safe and economic pipeline transportation and storage. The main features and results recorded from some of the unique test facilities constructed as part of the project are presented. These include an extensively instrumented realistic-scale test pipeline for conducting pipeline rupture and dispersion tests in China, an injection test facility in France to study the mobility of trace metallic elements contained in a CO2 stream following injection near a shallow-water qualifier and fluid/rock interactions and well integrity experiments conducted using a fully instrumented deep-well CO2/impurities injection test facility in Israel. The above, along with the various unique mathematical models developed, provide the fundamentally important tools needed to define impurity tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure, thus contributing to the development of relevant standards for the safe design and economic operation of CCS.
  •  
7.
  • Rey, J., et al. (författare)
  • Brown dwarf companion with a period of 4.6 yr interacting with the hot Jupiter CoRoT-20b
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of an additional substellar companion in the CoRoT-20 system based on six years of HARPS and SOPHIE radial velocity follow-up. CoRoT-20 c has a minimum mass of 17 ± 1 MJup and orbits the host star in 4.59 ± 0.05 yr, with an orbital eccentricity of 0.60 ± 0.03. This is the first identified system with an eccentric hot Jupiter and an eccentric massive companion. The discovery of the latter might be an indication of the migration mechanism of the hot Jupiter, via the Lidov-Kozai effect. We explore the parameter space to determine which configurations would trigger this type of interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy