SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heck A) srt2:(2020-2024)"

Sökning: WFRF:(Heck A) > (2020-2024)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Leoz, M. L. A., et al. (författare)
  • NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods
  • 2020
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476. ; 19:1, s. 11-30
  • Tidskriftsartikel (refereegranskat)abstract
    • A broad-based interlaboratory study of glycosylation profiles of a reference and modified IgG antibody involving 103 reports from 76 laboratories. Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.
  •  
2.
  • McMahon, J. H., et al. (författare)
  • Neurotoxicity with high-dose disulfiram and vorinostat used for HIV latency reversal
  • 2022
  • Ingår i: Aids. - : Ovid Technologies (Wolters Kluwer Health). - 0269-9370 .- 1473-5571. ; 36:1, s. 75-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aim of this study was to examine whether administering both vorinostat and disulfiram to people with HIV (PWH) on antiretroviral therapy (ART) is well tolerated and can enhance HIV latency reversal. Design: Vorinostat and disulfiram can increase HIV transcription in PWH on ART. Together, these agents may lead to significant HIV latency reversal. Methods: Virologically suppressed PWH on ART received disulfiram 2000 mg daily for 28 days and vorinostat 400 mg daily on days 8-10 and 22-24. The primary endpoint was plasma HIV RNA on day 11 relative to baseline using a single copy assay. Assessments included cell-associated unspliced RNA as a marker of latency reversal, HIV DNA in CD4(+) T-cells, plasma HIV RNA, and plasma concentrations of ART, vorinostat, and disulfiram. Results: The first two participants (P1 and P2) experienced grade 3 neurotoxicity leading to trial suspension. After 24 days, P1 presented with confusion, lethargy, and ataxia having stopped disulfiram and ART. Symptoms resolved by day 29. After 11 days, P2 presented with paranoia, emotional lability, lethargy, ataxia, and study drugs were ceased. Symptoms resolved by day 23. CA-US RNA increased by 1.4-fold and 1.3-fold for P1 and P2 respectively. Plasma HIV RNA was detectable from day 8 to 37 (peak 81 copies ml(-1)) for P2 but was not increased in P1 Antiretroviral levels were therapeutic and neuronal injury markers were elevated in P1. Conclusion: The combination of prolonged high-dose disulfiram and vorinostat was not safe in PWH on ART and should not be pursued despite evidence of latency reversal.
  •  
3.
  •  
4.
  •  
5.
  • Hevler, JF, et al. (författare)
  • MRPS36 provides a structural link in the eukaryotic 2-oxoglutarate dehydrogenase complex
  • 2023
  • Ingår i: Open biology. - : The Royal Society. - 2046-2441. ; 13:3, s. 220363-
  • Tidskriftsartikel (refereegranskat)abstract
    • The tricarboxylic acid cycle is the central pathway of energy production in eukaryotic cells and plays a key part in aerobic respiration throughout all kingdoms of life. One of the pivotal enzymes in this cycle is 2-oxoglutarate dehydrogenase complex (OGDHC), which generates NADH by oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. OGDHC is a megadalton protein complex originally thought to be assembled from three catalytically active subunits (E1o, E2o, E3). In fungi and animals, however, the protein MRPS36 has more recently been proposed as a putative additional component. Based on extensive cross-linking mass spectrometry data supported by phylogenetic analyses, we provide evidence that MRPS36 is an important member of the eukaryotic OGDHC, with no prokaryotic orthologues. Comparative sequence analysis and computational structure predictions reveal that, in contrast with bacteria and archaea, eukaryotic E2o does not contain the peripheral subunit-binding domain (PSBD), for which we propose that MRPS36 evolved as an E3 adaptor protein, functionally replacing the PSBD. We further provide a refined structural model of the complete eukaryotic OGDHC of approximately 3.45 MDa with novel mechanistic insights.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy