SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hedenstierna L) srt2:(2010-2014)"

Sökning: WFRF:(Hedenstierna L) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Borges, João Batista, et al. (författare)
  • Early inflammation mainly affects normally and poorly aerated lung in experimental ventilator-induced lung injury
  • 2014
  • Ingår i: Critical Care Medicine. - 0090-3493 .- 1530-0293. ; 42:4, s. e279-e287
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The common denominator in most forms of ventilator-induced lung injury is an intense inflammatory response mediated by neutrophils. PET with [F]fluoro-2-deoxy-D-glucose can be used to image cellular metabolism, which, during lung inflammatory processes, mainly reflects neutrophil activity, allowing the study of regional lung inflammation in vivo. The aim of this study was to assess the location and magnitude of lung inflammation using PET imaging of [F]fluoro-2-deoxy-D-glucose in a porcine experimental model of early acute respiratory distress syndrome.DESIGN: Prospective laboratory investigation.SETTING: A university animal research laboratory.SUBJECTS: Seven piglets submitted to experimental ventilator-induced lung injury and five healthy controls.INTERVENTIONS: Lung injury was induced by lung lavages and 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressure and high inspiratory pressures. All animals were subsequently studied with dynamic PET imaging of [F]fluoro-2-deoxy-D-glucose. CT scans were acquired at end expiration and end inspiration.MEASUREMENTS AND MAIN RESULTS: [F]fluoro-2-deoxy-D-glucose uptake rate was computed for the whole lung, four isogravitational regions, and regions grouping voxels with similar density. Global and intermediate gravitational zones [F]fluoro-2-deoxy-D-glucose uptakes were higher in ventilator-induced lung injury piglets compared with controls animals. Uptake of normally and poorly aerated regions was also higher in ventilator-induced lung injury piglets compared with control piglets, whereas regions suffering tidal recruitment or tidal hyperinflation had [F]fluoro-2-deoxy-D-glucose uptakes similar to controls.CONCLUSIONS: The present findings suggest that normally and poorly aerated regions-corresponding to intermediate gravitational zones-are the primary targets of the inflammatory process accompanying early experimental ventilator-induced lung injury. This may be attributed to the small volume of the aerated lung, which receives most of ventilation.
  •  
4.
  • Borges, João Batista, et al. (författare)
  • Regional Lung Perfusion estimated by Electrical Impedance Tomography in a piglet model of lung collapse
  • 2011
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 112:1, s. 225-236
  • Tidskriftsartikel (refereegranskat)abstract
    • The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology which provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT) based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6 %, with a standard deviation of 2.9 %. This method outperformed the estimates of lung perfusion based on impedance-pulsatility. In conclusion, we describe a novel method based on Electrical Impedance Tomography for estimating regional lung perfusion at the bedside. In both, healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this paper has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.
  •  
5.
  • Dellaca, Raffaele L., et al. (författare)
  • Optimisation of positive end-expiratory pressure by forced oscillation technique in a lavage model of acute lung injury
  • 2011
  • Ingår i: Intensive Care Medicine. - : Springer Science and Business Media LLC. - 0342-4642 .- 1432-1238. ; 37:6, s. 1021-1030
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated whether oscillatory compliance (C-X5) measured by forced oscillation technique (FOT) at 5 Hz may be useful for positive end-expiratory pressure (PEEP) optimisation. We studied seven pigs in which lung injury was induced by broncho-alveolar lavage. The animals were ventilated in volume control mode with a tidal volume of 6 ml/kg. Forced oscillations were superimposed on the ventilation waveform for the assessment of respiratory mechanics. PEEP was increased from 0 to 24 cmH(2)O in steps of 4 cmH(2)O and subsequently decreased from 24 to 0 in steps of 2 cmH(2)O. At each 8-min step, a CT scan was acquired during an end-expiratory hold, and blood gas analysis was performed. C-X5 was monitored continuously, and data relative to the expiratory hold were selected and averaged for comparison with CT and oxygenation. Open lung PEEP (PEEPol) was defined as the level of PEEP corresponding to the maximum value of C-X5 on the decremental limb of the PEEP trial. PEEPol was on average 13.4 (+/- 1.0) cmH(2)O. For higher levels of PEEP, there were no significant changes in the amount of non-aerated tissue (V-tissNA%). In contrast, when PEEP was reduced below PEEPol, V-tissNA% dramatically increased. PEEPol was able to prevent a 5% drop in V-tissNA% with 100% sensitivity and 92% specificity. At PEEPol V-tissNA% was significantly lower than at the corresponding PEEP level on the incremental limb. The assessment of C-X5 allowed the definition of PEEPol to be in agreement with CT data. Thus, FOT measurements of C-X5 may provide a non-invasive bedside tool for PEEP titration.
  •  
6.
  • Kostic, Peter, et al. (författare)
  • Positive end-expiratory pressure optimization with forced oscillation technique reduces ventilator induced lung injury : a controlled experimental study in pigs with saline lavage lung injury
  • 2011
  • Ingår i: Critical Care. - : Springer Science and Business Media LLC. - 1364-8535 .- 1466-609X. ; 15:3, s. R126-
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Protocols using high levels of positive end-expiratory pressure (PEEP) in combination with low tidal volumes have been shown to reduce mortality in patients with severe acute respiratory distress syndrome (ARDS). However, the optimal method for setting PEEP is yet to be defined. It has been shown that respiratory system reactance (Xrs), measured by the forced oscillation technique (FOT) at 5 Hz, may be used to identify the minimal PEEP level required to maintain lung recruitment. The aim of the present study was to evaluate if using Xrs for setting PEEP would improve lung mechanics and reduce lung injury compared to an oxygenation-based approach. Methods: 17 pigs, in which acute lung injury (ALI) was induced by saline lavage, were studied. Animals were randomized into two groups: in the first PEEP was titrated according to Xrs (FOT group), in the control group PEEP was set according to the ARDSNet protocol (ARDSNet group). The duration of the trial was 12 hours. In both groups recruitment maneuvers (RM) were performed every 2 hours, increasing PEEP to 20 cmH(2)O. In the FOT group PEEP was titrated by monitoring Xrs while PEEP was reduced from 20 cmH(2)O in steps of 2 cmH(2)O. PEEP was considered optimal at the step before which Xrs started to decrease. Ventilatory parameters, lung mechanics, blood gases and hemodynamic parameters were recorded hourly. Lung injury was evaluated by histopathological analysis. Results: The PEEP levels set in the FOT group were significantly higher compared to those set in the ARDSNet group during the whole trial. These higher values of PEEP resulted in improved lung mechanics, reduced driving pressure, improved oxygenation, with a trend for higher PaCO(2) and lower systemic and pulmonary pressure. After 12 hours of ventilation, histopathological analysis showed a significantly lower score of lung injury in the FOT group compared to the ARDSNet group. Conclusions: In a lavage model of lung injury a PEEP optimization strategy based on maximizing Xrs attenuated the signs of ventilator induced lung injury. The respiratory system reactance measured by FOT could thus be an important component in a strategy for delivering protective ventilation to patients with ARDS/acute lung injury.
  •  
7.
  • Zannin, Emanuela, et al. (författare)
  • Optimizing positive end-expiratory pressure by oscillatory mechanics minimizes tidal recruitment and distension : an experimental study in a lavage model of lung injury
  • 2012
  • Ingår i: Critical Care. - : Springer Science and Business Media LLC. - 1364-8535 .- 1466-609X. ; 16:6, s. R217-
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION:It is well established that during mechanical ventilation of patients with acute respiratory distress syndrome cyclic recruitment/derecruitment and overdistension are potentially injurious for lung tissues. We evaluated whether the forced oscillation technique (FOT) could be used to guide the ventilator settings in order to minimize cyclic lung recruitment/derecruitment and cyclic mechanical stress in an experimental model of acute lung injury.METHODS:We studied six pigs in which lung injury was induced by bronchoalveolar lavage. The animals were ventilated with a tidal volume of 6 ml/kg. Forced oscillations at 5 Hz were superimposed on the ventilation waveform. Pressure and flow were measured at the tip and at the inlet of the endotracheal tube respectively. Respiratory system reactance (Xrs) was computed from the pressure and flow signals and expressed in terms of oscillatory elastance (EX5). Positive end-expiratory pressure (PEEP) was increased from 0 to 24 cm H2O in steps of 4 cm H2O and subsequently decreased from 24 to 0 in steps of 2 cm H2O. At each PEEP step CT scans and EX5 were assessed at end-expiration and end-inspiration.RESULTS:During deflation the relationship between both end-expiratory and end-inspiratory EX5 and PEEP was a U-shaped curve with minimum values at PEEP = 13.4 ± 1.0 cm H2O (mean ± SD) and 13.0 ± 1.0 cm H2O respectively. EX5 was always higher at end-inspiration than at end-expiration, the difference between the average curves being minimal at 12 cm H2O. At this PEEP level, CT did not show any substantial sign of intra-tidal recruitment/derecruitment or expiratory lung collapse.CONCLUSIONS:Using FOT it was possible to measure EX5 both at end-expiration and at end-inspiration. The optimal PEEP strategy based on end-expiratory EX5 minimized intra-tidal recruitment/derecruitment as assessed by CT, and the concurrent attenuation of intra-tidal variations of EX5 suggests that it may also minimize tidal mechanical stress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy