SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heitman Laura) "

Sökning: WFRF:(Heitman Laura)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gutlerrez-de-Teran, Hugo, et al. (författare)
  • The Role of a Sodium Ion Binding Site in the Allosteric Modulation of the A(2A) Adenosine G Protein-Coupled Receptor
  • 2013
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 21:12, s. 2175-2185
  • Tidskriftsartikel (refereegranskat)abstract
    • The function of G protein-coupled receptors (GPCRs) can be modulated by a number of endogenous allosteric molecules. In this study, we used molecular dynamics, radioligand binding, and thermostability experiments to elucidate the role of the recently discovered sodium ion binding site in the allosteric modulation of the human A(2A) adenosine receptor, conserved among class A GPCRs. While the binding of antagonists and sodium ions to the receptor was noncompetitive in nature, the binding of agonists and sodium ions appears to require mutually exclusive conformational states of the receptor. Anniloride analogs can also bind to the sodium binding pocket, showing distinct patterns of agonist and antagonist modulation. These findings suggest that physiological concentrations of sodium ions affect functionally relevant conformational states of GPCRs and can help to design novel synthetic allosteric modulators or bitopic ligands exploiting the sodium ion binding pocket.
  •  
2.
  • Jespers, Willem, et al. (författare)
  • Deciphering conformational selectivity in the A(2A) adenosine G protein-coupled receptor by free energy simulations
  • 2021
  • Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 17:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Transmembranal G Protein-Coupled Receptors (GPCRs) transduce extracellular chemical signals to the cell, via conformational change from a resting (inactive) to an active (canonically bound to a G-protein) conformation. Receptor activation is normally modulated by extracellular ligand binding, but mutations in the receptor can also shift this equilibrium by stabilizing different conformational states. In this work, we built structure-energetic relationships of receptor activation based on original thermodynamic cycles that represent the conformational equilibrium of the prototypical A(2A) adenosine receptor (AR). These cycles were solved with efficient free energy perturbation (FEP) protocols, allowing to distinguish the pharmacological profile of different series of A(2A)AR agonists with different efficacies. The modulatory effects of point mutations on the basal activity of the receptor or on ligand efficacies could also be detected. This methodology can guide GPCR ligand design with tailored pharmacological properties, or allow the identification of mutations that modulate receptor activation with potential clinical implications.
  •  
3.
  •  
4.
  • Jespers, Willem, et al. (författare)
  • Structural Mapping of Adenosine Receptor Mutations : Ligand Binding and Signaling Mechanisms
  • 2018
  • Ingår i: TIPS - Trends in Pharmacological Sciences. - : Elsevier BV. - 0165-6147 .- 1873-3735. ; 39:1, s. 75-89
  • Forskningsöversikt (refereegranskat)abstract
    • The four adenosine receptors (ARs), A(1), A(2A), A(2B), and A(3), constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemented with structural information, currently consisting of several inactive and active structures of the A(2A) and inactive conformations of the A(1) ARs. We provide the first integrated view of the pharmacological, biochemical, and structural data available for this receptor family, by mapping onto the relevant crystal structures all site-directed mutagenesis data, curated and deposited at the GPCR database (available through http://www.gpcrdb.org). This analysis provides novel insights into ligand binding, allosteric modulation, and signaling of the AR family.
  •  
5.
  • Massink, Arnault, et al. (författare)
  • Sodium Ion Binding Pocket Mutations and Adenosine A(2A) Receptor Function
  • 2015
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 87:2, s. 305-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently we identified a sodium ion binding pocket in a high-resolution structure of the human adenosine A(2A) receptor. In the present study we explored this binding site through site-directed mutagenesis and molecular dynamics simulations. Amino acids in the pocket were mutated to alanine, and their influence on agonist and antagonist affinity, allosterism by sodium ions and amilorides, and receptor functionality was explored. Mutation of the polar residues in the Na+ pocket were shown to either abrogate (D52A(2.50) and N284A(7.49)) or reduce (S91A(3.39), W246A(6.48), and N280A(7.45)) the negative allosteric effect of sodium ions on agonist binding. Mutations D52A(2.50) and N284A(7.49) completely abolished receptor signaling, whereas mutations S91A(3.39) and N280A(7.45) elevated basal activity and mutations S91A(3.39), W246A(6.48), and N280A(7.45) decreased agonist-stimulated receptor signaling. In molecular dynamics simulations D52A(2.50) directly affected the mobility of sodium ions, which readily migrated to another pocket formed by Glu13(1.39) and His278(7.43). The D52A(2.50) mutation also decreased the potency of amiloride with respect to ligand displacement but did not change orthosteric ligand affinity. In contrast, W246A(6.48) increased some of the allosteric effects of sodium ions and amiloride, whereas orthosteric ligand binding was decreased. These new findings suggest that the sodium ion in the allosteric binding pocket not only impacts ligand affinity but also plays a vital role in receptor signaling. Because the sodium ion binding pocket is highly conserved in other class A G protein-coupled receptors, our findings may have a general relevance for these receptors and may guide the design of novel synthetic allosteric modulators or bitopic ligands.
  •  
6.
  •  
7.
  • Wang, Xuesong, et al. (författare)
  • Identification of V6.51L as a selectivity hotspot in stereoselective A(2B) adenosine receptor antagonist recognition
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The four adenosine receptors (ARs) A(1)AR, A(2A)AR, A(2B)AR(,) and A(3)AR are G protein-coupled receptors (GPCRs) for which an exceptional amount of experimental and structural data is available. Still, limited success has been achieved in getting new chemical modulators on the market. As such, there is a clear interest in the design of novel selective chemical entities for this family of receptors. In this work, we investigate the selective recognition of ISAM-140, a recently reported A(2B)AR reference antagonist. A combination of semipreparative chiral HPLC, circular dichroism and X-ray crystallography was used to separate and unequivocally assign the configuration of each enantiomer. Subsequently affinity evaluation for both A(2A) and A(2B) receptors demonstrate the stereospecific and selective recognition of (S)-ISAM140 to the A(2B)AR. The molecular modeling suggested that the structural determinants of this selectivity profile would be residue V250(6.51) in A(2B)AR, which is a leucine in all other ARs including the closely related A(2A)AR. This was herein confirmed by radioligand binding assays and rigorous free energy perturbation (FEP) calculations performed on the L249V(6.51) mutant A(2A)AR receptor. Taken together, this study provides further insights in the binding mode of these A(2B)AR antagonists, paving the way for future ligand optimization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy