SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hektor A) srt2:(2020-2024)"

Sökning: WFRF:(Hektor A) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Marco, O., et al. (författare)
  • The messy death of a multiple star system and the resulting planetary nebula as observed by JWST
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:12, s. 1421-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetary nebulae—the ejected envelopes of red giant stars—provide us with a history of the last, mass-losing phases of 90% of stars initially more massive than the Sun. Here we analyse images of the planetary nebula NGC 3132 from the James Webb Space Telescope (JWST) Early Release Observations. A structured, extended hydrogen halo surrounding an ionized central bubble is imprinted with spiral structures, probably shaped by a low-mass companion orbiting the central star at about 40–60 au. The images also reveal a mid-infrared excess at the central star, interpreted as a dusty disk, which is indicative of an interaction with another closer companion. Including the previously known A-type visual companion, the progenitor of the NGC 3132 planetary nebula must have been at least a stellar quartet. The JWST images allow us to generate a model of the illumination, ionization and hydrodynamics of the molecular halo, demonstrating the power of JWST to investigate complex stellar outflows. Furthermore, new measurements of the A-type visual companion allow us to derive the value for the mass of the progenitor of a central star with excellent precision: 2.86 ± 0.06 M⊙. These results serve as pathfinders for future JWST observations of planetary nebulae, providing unique insight into fundamental astrophysical processes including colliding winds and binary star interactions, with implications for supernovae and gravitational-wave systems.
  •  
2.
  • Henningsson, N. Axel, et al. (författare)
  • Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data
  • 2020
  • Ingår i: Journal of Applied Crystallography. - 0021-8898. ; 53, s. 314-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157-164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data.
  •  
3.
  • Martell, J., et al. (författare)
  • Combined Neutron and X-Ray Tomography-A Versatile and Non-Destructive Tool in Planetary Geosciences
  • 2024
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 129:2
  • Forskningsöversikt (refereegranskat)abstract
    • With several upcoming sample return missions, such as the Mars Sample Return Campaign, non-destructive methods will be key to maximizing their scientific output. In this study, we demonstrate that the combination of neutron and X-ray tomography provides an important tool for the characterization of such valuable samples. These methods allow quantitative analyses of internal sample features and also provide a guide for further destructive analyses with little to no sample treatment, which maintains sample integrity, including minimizing the risk of potential contamination. Here, we present and review the results from four case studies of terrestrial impactites and meteorites along with their analytical setup. Using combined X-ray and neutron tomography, a Ni-Fe silicide spherule, that is, projectile material, was located within a Libyan Desert Glass sample and the distribution of hydrous phases was pinpointed in selected impactite samples from the Chicxulub IODP-ICDP Expedition 364 drill core and the Luizi impact structure, as well as in the Miller Range 03346 Martian meteorite. Neutron and X-ray tomography give complementary three-dimensional information about the distribution of different phases within a geologic sample. We demonstrate that these two methods can be successfully used to locate meteoritic material (i.e., from the impacting object) and hydrous components in terrestrial impactites and meteorites. This can help shed light on aqueous processes in the Solar System as well as the impact cratering process. Non-destructive methods like these will be important for up-coming sample return missions to characterize the returned samples and guide further destructive analyses. Combined neutron and X-ray imaging was used to locate projectile material and hydrous phases in meteorites and terrestrial impactites Locating and identifying projectile material can shed light on the impact cratering process Combined neutron/X-ray tomography can serve as a fundamental method for the characterization of material from (future) sample return missions
  •  
4.
  • Stenqvist, Torkel, et al. (författare)
  • 3D X-Ray Diffraction Characterization of Grain Growth and Recrystallization in Rolled Braze Clad Aluminum Sheet
  • 2021
  • Ingår i: Advanced Engineering Materials. - : Wiley. - 1438-1656 .- 1527-2648. ; 23:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Braze clad on aluminum (Al) sheets has enabled fast and convenient brazing assembly of complex heat exchangers. However, there are details in the brazing process that are not fully understood. Herein, 3D X-ray diffraction (3DXRD) is used to investigate the grain position, size, and orientation before and after controlled atmosphere brazing (CAB). The outcomes are presented as maps of center-of-mass positions with relative grain size distribution and color-coded grain orientations. The results show that, for braze clad Al sheets exposed to CAB simulation, it is possible to distinguish grains from the solidified Al-Si alloy from those in the core Al alloy. It is also possible to distinguish new grains obtained through recrystallization during CAB. Hence, the study shows that stretching of the rolled Al sheet by 6% provides enough stored energy in the core material so that recrystallization occurs during CAB and, in addition, provides conditions for Al-Si alloy grain growth into the core material. While the phenomenon is well known, it is poorly understood for processes in connection with brazing of mechanically formed Al alloy components in heat exchanger assemblies, and these results demonstrate the potential for gaining deeper insights through 3DXRD.
  •  
5.
  • Törnquist, Elin, et al. (författare)
  • Dual modality neutron and x-ray tomography for enhanced image analysis of the bone-metal interface
  • 2021
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 66:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone tissue formed at the contact interface with metallic implants, particularly its 3D microstructure, plays a pivotal role for the structural integrity of implant fixation. X-ray tomography is the classical imaging technique used for accessing microstructural information from bone tissue. However, neutron tomography has shown promise for visualising the immediate bone-metal implant interface, something which is highly challenging with x-rays due to large differences in attenuation between metal and biological tissue causing image artefacts. To highlight and explore the complementary nature of neutron and x-ray tomography, proximal rat tibiae with titanium-based implants were imaged with both modalities. The two techniques were compared in terms of visualisation of different material phases and by comparing the properties of the individual images, such as the contrast-to-noise ratio. After superimposing the images using a dedicated image registration algorithm, the complementarity was further investigated via analysis of the dual modality histogram, joining the neutron and x-ray data. From these joint histograms, peaks with well-defined grey value intervals corresponding to the different material phases observed in the specimens were identified and compared. The results highlight differences in how neutrons and x-rays interact with biological tissues and metallic implants, as well as the benefits of combining both modalities. Future refinement of the joint histogram analysis could improve the segmentation of structures and tissues, and yield novel information about specimen-specific properties such as moisture content.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy