SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Helin M) srt2:(2020-2024)"

Sökning: WFRF:(Helin M) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Snellman, Anniina, et al. (författare)
  • APOE epsilon 4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly
  • 2023
  • Ingår i: Alzheimers Research & Therapy. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundNeuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (A beta) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE epsilon 4 allele, the strongest genetic risk for sporadic AD.MethodsSixty 60-75-year-old APOE epsilon 4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent C-11-PK11195 PET (targeting 18-kDa translocator protein, TSPO), C-11-PiB PET (targeting A beta), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). C-11-PK11195 distribution volume ratios and C-11-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early A beta accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma A beta(1-42/1.40).ResultsIn our cognitively unimpaired sample, cortical C-11-PiB-binding increased according to APOE epsilon 4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite C-11-PK11195-binding did not differ between the APOE epsilon 4 gene doses (P = 0.27) or between A beta-positive and A beta-negative individuals (P = 0.81) and associated with higher A beta burden only in APOE epsilon 4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical C-11-PiB (Rho = 0.35, P = 0.040), but not C-11-PK11195-binding (Rho = 0.13, P = 0.47) in A beta-positive individuals. In the total cognitively unimpaired population, both higher composite C-11-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated C-11-PiB-binding was associated with lower APCC scores.ConclusionsOnly A beta burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE epsilon 4 gene dose. However, APOE epsilon 4 gene dose seemed to modulate the association between neuroinflammation and A beta.
  •  
2.
  • Tulstrup, M, et al. (författare)
  • TET2 mutations are associated with hypermethylation at key regulatory enhancers in normal and malignant hematopoiesis
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 6061-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the epigenetic modifier TET2 are frequent in myeloid malignancies and clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). Here, we investigate associations between TET2 mutations and DNA methylation in whole blood in 305 elderly twins, 15 patients with CCUS and 18 healthy controls. We find that TET2 mutations are associated with DNA hypermethylation at enhancer sites in whole blood in CHIP and in both granulocytes and mononuclear cells in CCUS. These hypermethylated sites are associated with leukocyte function and immune response and ETS-related and C/EBP-related transcription factor motifs. While the majority of TET2-associated hypermethylation sites are shared between CHIP and in AML, we find a set of AML-specific hypermethylated loci at active enhancer elements in hematopoietic stem cells. In summary, we show that TET2 mutations is associated with hypermethylated enhancers involved in myeloid differentiation in both CHIP, CCUS and AML patients.
  •  
3.
  • Damhofer, Helene, et al. (författare)
  • TAK1 inhibition leads to RIPK1-dependent apoptosis in immune-activated cancers
  • 2024
  • Ingår i: Cell Death and Disease. - : Springer Nature. - 2041-4889. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Poor survival and lack of treatment response in glioblastoma (GBM) is attributed to the persistence of glioma stem cells (GSCs). To identify novel therapeutic approaches, we performed CRISPR/Cas9 knockout screens and discovered TGFβ activated kinase (TAK1) as a selective survival factor in a significant fraction of GSCs. Loss of TAK1 kinase activity results in RIPK1-dependent apoptosis via Caspase-8/FADD complex activation, dependent on autocrine TNFα ligand production and constitutive TNFR signaling. We identify a transcriptional signature associated with immune activation and the mesenchymal GBM subtype to be a characteristic of cancer cells sensitive to TAK1 perturbation and employ this signature to accurately predict sensitivity to the TAK1 kinase inhibitor HS-276. In addition, exposure to pro-inflammatory cytokines IFN gamma and TNFα can sensitize resistant GSCs to TAK1 inhibition. Our findings reveal dependency on TAK1 kinase activity as a novel vulnerability in immune-activated cancers, including mesenchymal GBMs that can be exploited therapeutically.
  •  
4.
  • Snellman, Anniina, et al. (författare)
  • Head-to-head comparison of plasma p-tau181, p-tau231 and glial fibrillary acidic protein in clinically unimpaired elderly with three levels of APOE4-related risk for Alzheimer's disease
  • 2023
  • Ingår i: Neurobiology of Disease. - 0969-9961. ; 183
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau (p-tau) and glial fibrillary acidic protein (GFAP) both reflect early changes in Alzheimer's disease (AD) pathology. Here, we compared the biomarker levels and their association with regional S-amyloid (AS) pathology and cognitive performance head-to-head in clinically unimpaired elderly (n = 88) at three levels of APOE4-related genetic risk for sporadic AD (APOE4/4 n = 19, APOE3/4 n = 32 or non-carriers n = 37). Concentrations of plasma p-tau181, p-tau231 and GFAP were measured using Single molecule array (Simoa), regional AS deposition with 11C-PiB positron emission tomography (PET), and cognitive performance with a preclinical composite. Significant differences in plasma p-tau181 and p-tau231, but not plasma GFAP concentrations were present between the APOE4 gene doses, explained solely by brain AS load. All plasma biomarkers correlated positively with AS PET in the total study population. This correlation was driven by APOE3/3 carriers for plasma p-tau markers and APOE4/4 carriers for plasma GFAP. Voxel-wise associations with amyloid-PET revealed different spatial patterns for plasma p-tau markers and plasma GFAP. Only higher plasma GFAP correlated with lower cognitive scores. Our observations suggest that plasma p-tau and plasma GFAP are both early AD markers reflecting different AS-related processes.
  •  
5.
  •  
6.
  • Olofsson, C, et al. (författare)
  • Effects of Acute Fructose Loading on Markers of Inflammation-A Pilot Study
  • 2021
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation plays a role in development of diabetic complications. The postprandial state has been linked to chronic low grade inflammation. We therefore aimed to investigate the acute effects of fructose loading, with and without a pizza, on metabolic and inflammatory markers in patients with type 2 diabetes (T2D) (n = 7) and in healthy subjects (HS) (n = 6), age 47–76 years. Drinks consumed were blueberry drink (18 g fructose), Coca-Cola (17.5 g fructose), and fructose drink (35 g fructose). The levels of glucose, insulin, insulin-like growth factor binding protein-1 (IGFBP-1) and inflammatory markers: Interleukin-6 (IL-6), Monocyte chemoattractant protein-1 (MCP-1), Interleukin-18 (IL-18), Intercellular Adhesion Molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and bacterial lipopolysaccharides (LPS) were analyzed in blood. The postprandial responses were assessed using Wilcoxon’s matched-pairs test, Friedman’s ANOVA and Mann–Whitney U test. There was no difference in baseline levels of inflammatory markers between the groups. In T2D, MCP-1 decreased following blueberry drink and Coca-Cola (p = 0.02), Coca-Cola + pizza and fructose + pizza (p = 0.03). In HS, IL-6 increased following blueberry + pizza and fructose + pizza (p = 0.03), there was a decrease in MCP-1 following blueberry drink and Coca-Cola (p = 0.03), and in ICAM-1 following blueberry + pizza (p = 0.03). These results may indicate a role for MCP-1 as a link between postprandial state and diabetes complications, however further mechanistic studies on larger population of patients with T2D are needed for confirmation of these results.
  •  
7.
  •  
8.
  •  
9.
  • Trempenau, ML, et al. (författare)
  • The histone demethylase KDM5C functions as a tumor suppressor in AML by repression of bivalently marked immature genes
  • 2023
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 37:3, s. 593-605
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic regulators are frequently mutated in hematological malignancies including acute myeloid leukemia (AML). Thus, the identification and characterization of novel epigenetic drivers affecting AML biology holds potential to improve our basic understanding of AML and to uncover novel options for therapeutic intervention. To identify novel tumor suppressive epigenetic regulators in AML, we performed an in vivo short hairpin RNA (shRNA) screen in the context of CEBPA mutant AML. This identified the Histone 3 Lysine 4 (H3K4) demethylase KDM5C as a tumor suppressor, and we show that reduced Kdm5c/KDM5C expression results in accelerated growth both in human and murine AML cell lines, as well as in vivo in Cebpa mutant and inv(16) AML mouse models. Mechanistically, we show that KDM5C act as a transcriptional repressor through its demethylase activity at promoters. Specifically, KDM5C knockdown results in globally increased H3K4me3 levels associated with up-regulation of bivalently marked immature genes. This is accompanied by a de-differentiation phenotype that could be reversed by modulating levels of several direct and indirect downstream mediators. Finally, the association of KDM5C levels with long-term disease-free survival of female AML patients emphasizes the clinical relevance of our findings and identifies KDM5C as a novel female-biased tumor suppressor in AML.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy