SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hellström Christer) srt2:(2000-2004)"

Sökning: WFRF:(Hellström Christer) > (2000-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bondjers, Cecilia, 1974, et al. (författare)
  • Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells.
  • 2003
  • Ingår i: The American journal of pathology. - 0002-9440. ; 162:3, s. 721-9
  • Tidskriftsartikel (refereegranskat)abstract
    • All blood capillaries consist of endothelial tubes surrounded by mural cells referred to as pericytes. The origin, recruitment, and function of the pericytes is poorly understood, but the importance of these cells is underscored by the severe cardiovascular defects in mice genetically devoid of factors regulating pericyte recruitment to embryonic vessels, and by the association between pericyte loss and microangiopathy in diabetes mellitus. A general problem in the study of pericytes is the shortage of markers for these cells. To identify new markers for pericytes, we have taken advantage of the platelet-derived growth factor (PDGF)-B knockout mouse model, in which developing blood vessels in the central nervous system are almost completely devoid of pericytes. Using cDNA microarrays, we analyzed the gene expression in PDGF-B null embryos in comparison with corresponding wild-type embryos and searched for down-regulated genes. The most down-regulated gene present on our microarray was RGS5, a member of the RGS family of GTPase-activating proteins for G proteins. In situ hybridization identified RGS5 expression in brain pericytes, and in pericytes and vascular smooth muscle cells in certain other, but not all, locations. Absence of RGS5 expression in PDGF-B and PDGFR beta-null embryos correlated with pericyte loss in these mice. Residual RGS5 expression in rare pericytes suggested that RGS5 is a pericyte marker expressed independently of PDGF-B/R beta signaling. With RGS5 as a proof-of-principle, our data demonstrate the usefulness of microarray analysis of mouse models for abnormal pericyte development in the identification of new pericyte-specific markers.
  •  
2.
  • Li, Xuri, et al. (författare)
  • PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor.
  • 2000
  • Ingår i: Nat Cell Biol. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 2:5, s. 302-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet-derived growth factors (PDGFs) are important in many types of mesenchymal cell. Here we identify a new PDGF, PDGF-C, which binds to and activates the PDGF alpha-receptor. PDGF-C is activated by proteolysis and induces proliferation of fibroblasts when overexpressed in transgenic mice. In situ hybridization analysis in the murine embryonic kidney shows preferential expression of PDGF-C messenger RNA in the metanephric mesenchyme during epithelial conversion. Analysis of kidneys lacking the PDGF alpha-receptor shows selective loss of mesenchymal cells adjacent to sites of expression of PDGF-C mRNA; this is not found in kidneys from animals lacking PDGF-A or both PDGF-A and PDGF-B, indicating that PDGF-C may have a unique function.
  •  
3.
  • Lindblom, Per, 1974, et al. (författare)
  • Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall.
  • 2003
  • Ingår i: Genes & development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 17:15, s. 1835-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Several platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) family members display C-terminal protein motifs that confer retention of the secreted factors within the pericellular space. To address the role of PDGF-B retention in vivo, we deleted the retention motif by gene targeting in mice. This resulted in defective investment of pericytes in the microvessel wall and delayed formation of the renal glomerulus mesangium. Long-term effects of lack of PDGF-B retention included severe retinal deterioration, glomerulosclerosis, and proteinuria. We conclude that retention of PDGF-B in microvessels is essential for proper recruitment and organization of pericytes and for renal and retinal function in adult mice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy