SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Helmich F. P.) srt2:(2015-2019)"

Sökning: WFRF:(Helmich F. P.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roelfsema, P. R., et al. (författare)
  • SPICA-A Large Cryogenic Infrared Space Telescope : Unveiling the Obscured Universe
  • 2018
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements in the infrared wavelength domain allow direct assessment of the physical state and energy balance of cool matter in space, enabling the detailed study of the processes that govern the formation and evolution of stars and planetary systems in galaxies over cosmic time. Previous infrared missions revealed a great deal about the obscured Universe, but were hampered by limited sensitivity. SPICA takes the next step in infrared observational capability by combining a large 2.5-meter diameter telescope. cooled to below 8 K, with instruments employing ultra-sensitive detectors. A combination of passive cooling and mechanical coolers will be used to cool both the telescope and the instruments. With mechanical coolers the mission lifetime is not limited by the supply of cryogen. With the combination of low telescope background and instruments with state-of-the-art detectors SPICA provides a huge advance on the capabilities of previous missions. SPICA instruments offer spectral resolving power ranging from R similar to 50 through 11 000 in the 17-230 mu m domain and R similar to 28.000 spectroscopy between 12 and 18 mu m.SPICA will provide efficient 30-37 mu m broad band mapping, and small field spectroscopic and polarimetric imaging at 100, 200 and 350 mu m. SPICA will provide infrared spectroscopy with an unprecedented sensitivity of similar to 5 x 10(-20) W m (-2) (5 sigma/1 h)-over two orders of magnitude improvement over what earlier missions. This exceptional performance leap, will open entirely new domains in infrared astronomy; galaxy evolution and metal production over cosmic time, dust formation and evolution from very early epochs onwards, the formation history of planetary systems.
  •  
2.
  • Leisawitz, David, et al. (författare)
  • The origins space telescope
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
3.
  • Wiedner, M.C., et al. (författare)
  • Heterodyn receiver for the Origins Space Telescope concept 2
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope (OST) is a NASA study for a large satellite mission to be submitted to the 2020 Decadal Review. The proposed satellite has a fleet of instruments including the HEterodyne Receivers for OST (HERO). HERO is designed around the quest to follow the trail of water from the ISM to disks around protostars and planets. HERO will perform high-spectral resolution measurements with 2x9 pixel focal plane arrays at any frequency between 468GHz to 2,700GHz (617 to 111 μm). HERO builds on the successful Herschel/HIFI heritage, as well as recent technological innovations, allowing it to surpass any prior heterodyne instrument in terms of sensitivity and spectral coverage.
  •  
4.
  • Leisawitz, David, et al. (författare)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
5.
  • Wiedner, M.C., et al. (författare)
  • A Proposed Heterodyne Receiver for the Origins Space Telescope
  • 2018
  • Ingår i: IEEE Transactions on Terahertz Science and Technology. - 2156-342X .- 2156-3446. ; 8:6, s. 558-571
  • Tidskriftsartikel (refereegranskat)abstract
    • The HEterodyne Receiver for the Origins Space Telescope (HERO) is a proposed design for a heterodyne focal plane array for a large space mission. The Origins Space Telescope (OST) is one of the four missions selected to be studied by NASA for the 2020 Astronomy and Astrophysics Decadal survey. HERO is designed to observe the trail of water from the interstellar medium (ISM) to disks around protostars. In Concept 1, HERO provides continuous frequency coverage from 468 to 2700 GHz in five bands and a sixth band to cover 4700 GHz. Most bands include 2 × 64 pixels providing at least an order of magnitude higher mapping speeds than available with today's instruments. Receiver sensitivities are expected to be close to the quantum limit. HERO Concept 2, highly constrained by cost and denoted Little-HERO, includes four bands with continuous coverage from 486 to 2700 GHz and with focal plane arrays having only 2 × 9 pixels per band. Both of these THz receiver concepts will be described and the designs will be motivated by the science drivers, the space craft constraints and the latest technological developments. The HERO design builds on the highly successful Herschel/Heterodyne Instrument for the Far-Infrared, on Stratospheric Observatory for Far-Infrared Astronomy/upGREAT and many other heterodyne receivers, but surpasses these in terms of frequency coverage, array size and sensitivity, thanks to the latest technical advances. HERO can be considered an example of a new generation of heterodyne focal plane arrays for future space missions.
  •  
6.
  • Wiedner, M.C., et al. (författare)
  • The origins space telescope and the heterodyne receiver for origins (HERO)
  • 2019
  • Ingår i: ISSTT 2019 - 30th International Symposium on Space Terahertz Technology, Proceedings Book. ; , s. 204-207
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope is one of four large mission concept studies carried out by NASA for the 2020 Decadal survey. Origins is a far-infrared telescope designed to understand the evolution of galaxies and black holes, to follow the trail of water from protostars to habitable planets and to search for biosignatures in the atmospheres of exoplanets. The Heterodyne Receiver for Origins (HERO) is the high spectral resolution receiver. It is the first heterodyne array receiver designed to fly on a satellite and an example for possible future focal plane arrays for space. HERO has focal plane arrays with nine pixels in two polarization. HERO covers a large frequency range between 486 and 2700 GHz in only 4 frequency bands, requiring local oscillators with fractional bandwidth of 45%. HERO uses the best superconducting mixers with noise temperatures between 1 and 3 hf/k and an intermediate bandwidth of 6 to 8 GHz. HERO can carry out dual polarization and dual-frequency observations. The major challenges for the HERO design are the low cooling power and the low electrical power available on a spacecraft, which impact the choice of the cryogenic amplifiers and backends. SiGe cryogenic amplifiers with a consumption of less than 0.5 mW, as well as CMOS spectrometers with a power consumption below 2W are the baseline for HERO. The development plan includes broadband (45%) multiplier-amplifier chains, low noise mixers (1-3 hf/k), low-power consuming (< 05.mW) cryogenic amplifiers and low-power consuming spectrometer backends (< 2W).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy