SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henne Stephan) srt2:(2022)"

Sökning: WFRF:(Henne Stephan) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergamaschi, Peter, et al. (författare)
  • High-resolution inverse modelling of European CH4emissions using the novel FLEXPART-COSMO TM5 4DVAR inverse modelling system
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:20, s. 13243-13268
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel high-resolution inverse modelling system ("FLEXVAR") based on FLEXPARTCOSMO back trajectories driven by COSMO meteorological fields at 7 km×7 km resolution over the European COSMO-7 domain and the four-dimensional variational (4DVAR) data assimilation technique. FLEXVAR is coupled offline with the global inverse modelling system TM5-4DVAR to provide background mole fractions ("baselines") consistent with the global observations assimilated in TM5-4DVAR. We have applied the FLEXVAR system for the inverse modelling of European CH4 emissions in 2018 using 24 stations with in situ measurements, complemented with data from five stations with discrete air sampling (and additional stations outside the European COSMO-7 domain used for the global TM5-4DVAR inversions). The sensitivity of the FLEXVAR inversions to different approaches to calculate the baselines, different parameterizations of the model representation error, different settings of the prior error covariance parameters, different prior inventories, and different observation data sets are investigated in detail. Furthermore, the FLEXVAR inversions are compared to inversions with the FLEXPART extended Kalman filter ("FLExKF") system and with TM5-4DVAR inversions at 1° × 1° resolution over Europe. The three inverse modelling systems show overall good consistency of the major spatial patterns of the derived inversion increments and in general only relatively small differences in the derived annual total emissions of larger country regions. At the same time, the FLEXVAR inversions at 7 km × 7 km resolution allow the observations to be better reproduced than the TM5-4DVAR simulations at 1° × 1°. The three inverse models derive higher annual total CH4 emissions in 2018 for Germany, France, and BENELUX compared to the sum of anthropogenic emissions reported to UNFCCC and natural emissions estimated from the Global Carbon Project CH4 inventory, but the uncertainty ranges of top-down and bottom-up total emission estimates overlap for all three country regions. In contrast, the top-down estimates for the sum of emissions from the UK and Ireland agree relatively well with the total of anthropogenic and natural bottom-up inventories.
  •  
2.
  • Pieber, Simone M., et al. (författare)
  • Analysis of regional CO2contributions at the high Alpine observatory Jungfraujoch by means of atmospheric transport simulations and δ13C
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:16, s. 10721-10749
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated the regional contributions of carbon dioxide (CO2) at the location of the high Alpine observatory Jungfraujoch (JFJ, Switzerland, 3580ĝ€¯mĝ€¯a.s.l.). To this purpose, we combined receptor-oriented atmospheric transport simulations for CO2 concentration in the period 2009-2017 with stable carbon isotope (δ13C-CO2) information. We applied two Lagrangian particle dispersion models driven by output from two different numerical weather prediction systems (FLEXPART-COSMO and STILT-ECMWF) in order to simulate CO2 concentration at JFJ based on regional CO2 fluxes, to estimate atmospheric δ13C-CO2, and to obtain model-based estimates of the mixed source signatures (δ13Cm). Anthropogenic fluxes were taken from a fuel-type-specific version of the EDGAR v4.3 inventory, while ecosystem fluxes were based on the Vegetation Photosynthesis and Respiration Model (VPRM). The simulations of CO2, δ13C-CO2, and δ13Cm were then compared to observations performed by quantum cascade laser absorption spectroscopy. The models captured around 40ĝ€¯% of the regional CO2 variability above or below the large-scale background and up to 35ĝ€¯% of the regional variability in δ13C-CO2. This is according to expectations considering the complex Alpine topography, the low intensity of regional signals at JFJ, and the challenging measurements. Best agreement between simulations and observations in terms of short-term variability and intensity of the signals for CO2 and δ13C-CO2 was found between late autumn and early spring. The agreement was inferior in the early autumn periods and during summer. This may be associated with the atmospheric transport representation in the models. In addition, the net ecosystem exchange fluxes are a possible source of error, either through inaccuracies in their representation in VPRM for the (Alpine) vegetation or through a day (uptake) vs. night (respiration) transport discrimination to JFJ. Furthermore, the simulations suggest that JFJ is subject to relatively small regional anthropogenic contributions due to its remote location (elevated and far from major anthropogenic sources) and the limited planetary boundary layer influence during winter. Instead, the station is primarily exposed to summertime ecosystem CO2 contributions, which are dominated by rather nearby sources (within 100ĝ€¯km). Even during winter, simulated gross ecosystem respiration accounted for approximately 50ĝ€¯% of all contributions to the CO2 concentrations above the large-scale background. The model-based monthly mean δ13Cm ranged from -ĝ€¯22ĝ€¯‰ in winter to -ĝ€¯28ĝ€¯‰ in summer and reached the most depleted values of -ĝ€¯35ĝ€¯‰ at higher fractions of natural gas combustion, as well as the most enriched values of -ĝ€¯17ĝ€¯‰ to -ĝ€¯12ĝ€¯‰ when impacted by cement production emissions. Observation-based δ13Cm values were derived independently from the simulations by a moving Keeling-plot approach. While model-based estimates spread in a narrow range, observation-based δ13Cm values exhibited a larger scatter and were limited to a smaller number of data points due to the stringent analysis prerequisites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy