SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heslegrave Amanda) srt2:(2024)"

Sökning: WFRF:(Heslegrave Amanda) > (2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carroll, Antonia S., et al. (författare)
  • Serum neurofilament light chain in hereditary transthyretin amyloidosis: validation in real-life practice
  • 2024
  • Ingår i: AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS. - 1350-6129 .- 1744-2818.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurofilament light chain (NfL) has emerged as a sensitive biomarker in hereditary transthyretin amyloid polyneuropathy (ATTRv-PN). We hypothesise that NfL can identify conversion of gene carriers to symptomatic disease, and guide treatment approaches. Methods: Serum NfL concentration was measured longitudinally (2015-2022) in 59 presymptomatic and symptomatic ATTR variant carriers. Correlations between NfL and demographics, biochemistry and staging scores were performed as well as longitudinal changes pre- and post-treatment, and in asymptomatic and symptomatic cohorts. Receiver-operating analyses were performed to determine cut-off values. Results: NfL levels correlated with examination scores (CMTNS, NIS and MRC; all p < .01) and increased with disease severity (PND and FAP; all p < .05). NfL was higher in symptomatic and sensorimotor converters, than asymptomatic or sensory converters irrespective of time (all p < .001). Symptomatic or sensorimotor converters were discriminated from asymptomatic patients by NfL concentrations >64.5 pg/ml (sensitivity= 91.9%, specificity = 88.5%), whereas asymptomatic patients could only be discriminated from sensory or sensorimotor converters or symptomatic individuals by a NfL concentration >88.9 pg/ml (sensitivity = 62.9%, specificity = 96.2%) However, an NfL increment of 17% over 6 months could discriminate asymptomatic from sensory or sensorimotor converters (sensitivity = 88.9%, specificity = 80.0%). NfL reduced with treatment by 36%/year and correlated with TTR suppression (r = 0.64, p = .008). Conclusions: This data validates the use of serum NfL to identify conversion to symptomatic disease in ATTRv-PN. NfL levels can guide assessment of disease progression and response to therapies.
  •  
2.
  • Leckey, Claire A, et al. (författare)
  • CSF neurofilament light chain profiling and quantitation in neurological diseases.
  • 2024
  • Ingår i: Brain communications. - 2632-1297. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.
  •  
3.
  • Pan, Xiaobei, et al. (författare)
  • Plasma metabolites distinguish dementia with Lewy bodies from Alzheimer's disease: a cross-sectional metabolomic analysis
  • 2024
  • Ingår i: FRONTIERS IN AGING NEUROSCIENCE. - 1663-4365. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundIn multifactorial diseases, alterations in the concentration of metabolites can identify novel pathological mechanisms at the intersection between genetic and environmental influences. This study aimed to profile the plasma metabolome of patients with dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), two neurodegenerative disorders for which our understanding of the pathophysiology is incomplete. In the clinical setting, DLB is often mistaken for AD, highlighting a need for accurate diagnostic biomarkers. We therefore also aimed to determine the overlapping and differentiating metabolite patterns associated with each and establish whether identification of these patterns could be leveraged as biomarkers to support clinical diagnosis.MethodsA panel of 630 metabolites (Biocrates MxP Quant 500) and a further 232 metabolism indicators (biologically informative sums and ratios calculated from measured metabolites, each indicative for a specific pathway or synthesis; MetaboINDICATOR) were analyzed in plasma from patients with probable DLB (n = 15; age 77.6 +/- 8.2 years), probable AD (n = 15; 76.1 +/- 6.4 years), and age-matched cognitively healthy controls (HC; n = 15; 75.2 +/- 6.9 years). Metabolites were quantified using a reversed-phase ultra-performance liquid chromatography column and triple-quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode, or by using flow injection analysis in MRM mode. Data underwent multivariate (PCA analysis), univariate and receiving operator characteristic (ROC) analysis. Metabolite data were also correlated (Spearman r) with the collected clinical neuroimaging and protein biomarker data.ResultsThe PCA plot separated DLB, AD and HC groups (R2 = 0.518, Q2 = 0.348). Significant alterations in 17 detected metabolite parameters were identified (q <= 0.05), including neurotransmitters, amino acids and glycerophospholipids. Glutamine (Glu; q = 0.045) concentrations and indicators of sphingomyelin hydroxylation (q = 0.039) distinguished AD and DLB, and these significantly correlated with semi-quantitative measurement of cardiac sympathetic denervation. The most promising biomarker differentiating AD from DLB was Glu:lysophosphatidylcholine (lysoPC a 24:0) ratio (AUC = 0.92; 95%CI 0.809-0.996; sensitivity = 0.90; specificity = 0.90).DiscussionSeveral plasma metabolomic aberrations are shared by both DLB and AD, but a rise in plasma glutamine was specific to DLB. When measured against plasma lysoPC a C24:0, glutamine could differentiate DLB from AD, and the reproducibility of this biomarker should be investigated in larger cohorts.
  •  
4.
  • Perino, Jacquelyn H, et al. (författare)
  • Neurofilament light chain concentration does not correlate with disease status in Labrador Retrievers affected with idiopathic laryngeal paralysis.
  • 2024
  • Ingår i: American journal of veterinary research. - 1943-5681. ; 85:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate whether plasma neurofilament light chain (pNfL) concentration was altered in Labrador Retrievers with idiopathic laryngeal paralysis (ILP) compared to a control population. A secondary aim was to investigate relationships between age, height, weight, and body mass index in the populations studied.123 dogs: 62 purebred Labrador Retrievers with ILP (ILP Cases) and 61 age-matched healthy medium- to large-breed dogs (Controls).Dogs, recruited from August 1, 2016, to March 1, 2022, were categorized as case or control based on a combination of physical exam, neurologic exam, and history. Blood plasma was collected, and pNfL concentration was measured. pNfL concentrations were compared between ILP Cases and Controls. Covariables including age, height, and weight were collected. Relationships between pNfL and covariables were analyzed within and between groups. In dogs where 2 plasma samples were available from differing time points, pNfL concentrations were measured to evaluate alterations over time.No significant difference in pNfL concentration was found between ILP Cases and Control (P = .36). pNfL concentrations had moderate negative correlations with weight and height in the Control group; other variables did not correlate with pNfL concentrations in ILP Case or Control groups. pNfL concentrations do not correlate with ILP disease status or duration in Labrador Retrievers.There is no evidence that pNfL levels are altered due to ILP disease duration or progression when compared with healthy controls. When evaluating pNfL concentrations in the dog, weight and height should be considered.
  •  
5.
  • Quartesan, Ilaria, et al. (författare)
  • Serum Neurofilament Light Chain in Replication Factor Complex Subunit 1 CANVAS and Disease Spectrum
  • 2024
  • Ingår i: Movement Disorders. - 0885-3185 .- 1531-8257. ; 39:1, s. 209-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Biallelic intronic AAGGG repeat expansions in the replication factor complex subunit 1 (RFC1) gene were identified as the leading cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome. Patients exhibit significant clinical heterogeneity and variable disease course, but no potential biomarker has been identified to date. Objectives: In this multicenter cross-sectional study, we aimed to evaluate neurofilament light (NfL) chain serum levels in a cohort of RFC1 disease patients and to correlate NfL serum concentrations with clinical phenotype and disease severity. Methods: Sixty-one patients with genetically confirmed RFC1 disease and 48 healthy controls (HCs) were enrolled from six neurological centers. Serum NfL concentration was measured using the single molecule array assay technique. Results: Serum NfL concentration was significantly higher in patients with RFC1 disease compared to age- and-sex-matched HCs (P < 0.0001). NfL level showed a moderate correlation with age in both HCs (r = 0.4353, P = 0.0020) and patients (r = 0.4092, P = 0.0011). Mean NfL concentration appeared to be significantly higher in patients with cerebellar involvement compared to patients without cerebellar dysfunction (27.88 vs. 21.84 pg/mL, P = 0.0081). The association between cerebellar involvement and NfL remained significant after controlling for age and sex (β = 0.260, P = 0.034). Conclusions: Serum NfL levels are significantly higher in patients with RFC1 disease compared to HCs and correlate with cerebellar involvement. Longitudinal studies are warranted to assess its change over time.
  •  
6.
  • Swift, Imogen J, et al. (författare)
  • A systematic review of progranulin concentrations in biofluids in over 7,000 people-assessing the pathogenicity of GRN mutations and other influencing factors.
  • 2024
  • Ingår i: Alzheimer's Research & Therapy. - 1758-9193. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations.Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data.We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p=0.007) with a trend in non-carriers (p=0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers.These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.
  •  
7.
  • Toniolo, Sofia, et al. (författare)
  • Relationship of plasma biomarkers to digital cognitive tests in Alzheimer's disease.
  • 2024
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - 2352-8729. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A major limitation in Alzheimer's disease (AD) research is the lack of the ability to measure cognitive performance at scale-robustly, remotely, and frequently. Currently, there are no established online digital platforms validated against plasma biomarkers of AD.We used a novel web-based platform that assessed different cognitive functions in AD patients (N=46) and elderly controls (N=53) who were also evaluated for plasma biomarkers (amyloid beta 42/40 ratio, phosphorylated tau ([p-tau]181, glial fibrillary acidic protein, neurofilament light chain). Their cognitive performance was compared to a second, larger group of elderly controls (N=352).Patients with AD were significantly impaired across all digital cognitive tests, with performance correlating with plasma biomarker levels, particularly p-tau181. The combination of p-tau181 and the single best-performing digital test achieved high accuracy in group classification.These findings show how online testing can now be deployed in patients with AD to measure cognitive function effectively and related to blood biomarkers of the disease.This is the first study comparing online digital testing to plasma biomarkers.Alzheimer's disease patients and two independent cohorts of elderly controls were assessed.Cognitive performance correlated with plasma biomarkers, particularly phosphorylated tau (p-tau)181.Glial fibrillary acidic protein and neurofilament light chain, and less so the amyloid beta 42/40 ratio, were also associated with performance.The best cognitive metric performed at par to p-tau181 in group classification.
  •  
8.
  • Zarkali, Angeliki, et al. (författare)
  • Neuroimaging and plasma evidence of early white matter loss in Parkinson's disease with poor outcomes.
  • 2024
  • Ingår i: Brain communications. - 2632-1297. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease is a common and debilitating neurodegenerative disorder, with over half of patients progressing to postural instability, dementia or death within 10 years of diagnosis. However, the onset and rate of progression to poor outcomes is highly variable, underpinned by heterogeneity in underlying pathological processes. Quantitative and sensitive measures predicting poor outcomes will be critical for targeted treatment, but most studies to date have been limited to a single modality or assessed patients with established cognitive impairment. Here, we used multimodal neuroimaging and plasma measures in 98 patients with Parkinson's disease and 28 age-matched controls followed up over 3 years. We examined: grey matter (cortical thickness and subcortical volume), white matter (fibre cross-section, a measure of macrostructure; and fibre density, a measure of microstructure) at whole-brain and tract level; structural and functional connectivity; and plasma levels of neurofilament light chain and phosphorylated tau 181. We evaluated relationships with subsequent poor outcomes, defined as development of mild cognitive impairment, dementia, frailty or death at any time during follow-up, in people with Parkinson's disease. We show that extensive white matter macrostructural changes are already evident at baseline assessment in people with Parkinson's disease who progress to poor outcomes (n = 31): with up to 19% reduction in fibre cross-section in multiple tracts, and a subnetwork of reduced structural connectivity strength, particularly involving connections between right frontoparietal and left frontal, right frontoparietal and left parietal and right temporo-occipital and left parietal modules. In contrast, grey matter volumes and functional connectivity were preserved in people with Parkinson's disease with poor outcomes. Neurofilament light chain, but not phosphorylated tau 181 levels were increased in people with Parkinson's disease with poor outcomes, and correlated with white matter loss. These findings suggest that imaging sensitive to white matter macrostructure and plasma neurofilament light chain may be useful early markers of poor outcomes in Parkinson's disease. As new targeted treatments for neurodegenerative disease are emerging, these measures show important potential to aid patient selection for treatment and improve stratification for clinical trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy