SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hetty Susanne) srt2:(2023)"

Sökning: WFRF:(Hetty Susanne) > (2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Fozia, et al. (författare)
  • Increased OCT3 Expression in Adipose Tissue With Aging : Implications for Catecholamine and Lipid Turnover and Insulin Resistance in Women
  • 2023
  • Ingår i: Endocrinology. - : Oxford University Press. - 0013-7227 .- 1945-7170. ; 165:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Catecholamine-stimulated lipolysis is reduced with aging, which may promote adiposity and insulin resistance. Organic cation transporter 3 (OCT3), which is inhibited by estradiol (E2), mediates catecholamine transport into adipocytes for degradation, thus decreasing lipolysis. In this study, we investigated the association of OCT3 mRNA levels in subcutaneous adipose tissue (SAT) with aging and markers of insulin resistance in women.Methods SAT biopsies were obtained from 66 women with (19) or without (47) type 2 diabetes (age 22-76 years, 20.0-40.1 kg/m2). OCT3 mRNA and protein levels were measured for group comparisons and correlation analysis. SAT was incubated with E2 and OCT3 mRNA levels were measured. Associations between OCT3 single nucleotide polymorphisms (SNPs) and diabetes-associated traits were assessed.Results OCT3 mRNA and protein levels in SAT increased with aging. SAT from postmenopausal women had higher levels of OCT3 than premenopausal women, and there was a dose-dependent reduction in OCT3 mRNA levels in SAT treated with E2. OCT3 mRNA levels were negatively associated with markers of insulin resistance, and ex vivo lipolysis. OCT3 SNPs were associated with BMI, waist to hip ratio, and circulating lipids (eg, triglycerides).Conclusion OCT3 mRNA and protein levels in SAT increased with aging, and mRNA levels were negatively associated with markers of insulin resistance. E2 incubation downregulated OCT3 mRNA levels, which may explain lower OCT3 mRNA in premenopausal vs postmenopausal women. High OCT3 protein levels in adipose tissue may result in increased catecholamine degradation, and this can contribute to the reduction in lipolysis observed in women with aging.
  •  
2.
  • Hetty, Susanne, PhD, 1979-, et al. (författare)
  • CABLES1 expression is reduced in human subcutaneous adipose tissue in obesity and type 2 diabetes but may not directly impact adipocyte glucose and lipid metabolism
  • 2023
  • Ingår i: Adipocyte. - : Informa UK Limited. - 2162-3945 .- 2162-397X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cdk5 and Abl enzyme substrate 1 (CABLES1) is a cell cycle regulator that has previously been identified as a candidate gene for obesity-related phenotypes, but little is known about its role in adipose tissue metabolism. In this study, we explore the role of CABLES1 in obesity and type 2 diabetes (T2D) in human subcutaneous adipose tissue (SAT). We performed gene expression analysis of SAT obtained from subjects with and without T2D, and from a second validation cohort consisting of subjects without T2D. We used CRISPR/Cas9 genome editing to perform CABLES1 loss-of-function studies in human primary preadipocytes and assessed them functionally after differentiation. CABLES1 gene expression in SAT was decreased in T2D by almost 25%, and inversely associated with insulin resistance markers and hyperglycaemia. mRNA levels were reduced with increasing BMI and negatively correlated with obesity markers. We found that adipocytes are likely the main CABLES1-expressing cell type in SAT, but CABLES1 depletion in adipocytes caused no phenotypical changes in regards to differentiation, glucose uptake, or expression of key genes of adipocyte function. These findings suggest that CABLES1 gene expression in SAT might be altered in obesity and T2D as a consequence of metabolic dysregulation rather than being a causal factor.
  •  
3.
  • Pereira, Maria J., 1981-, et al. (författare)
  • Interleukin-33 inhibits glucose uptake in human adipocytes and its expression in adipose tissue is elevated in insulin resistance and type 2 diabetes
  • 2023
  • Ingår i: Cytokine. - : Elsevier. - 1043-4666 .- 1096-0023. ; 161
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Interleukin-33 (IL-33) is associated with obesity-related inflammation. We aim to investigate IL-33 expression in subcutaneous adipose tissue (SAT) in type 2 diabetes (T2D) subjects and its effects on human adipocyte glucose uptake.METHODS: Expression of IL-33 was analysed in SAT from cohort studies including subjects with and without obesity and T2D and correlated with insulin resistance and obesity markers. Magnetic resonance imaging (MRI) of tissue fat volumes was performed. We investigated the effects of IL-33 treatment on ex vivo adipocyte glucose uptake.RESULTS: T2D subjects had higher IL-33 gene and protein expression in SAT than the control subjects. IL-33 mRNA expression was positively correlated with markers of dysglycemia (e.g. HbA1c), insulin resistance (e.g. HOMA-IR) and adiposity (BMI, visceral adipose tissue volume, liver and pancreas fat %). In multiple linear regression analyses, insulin resistance and T2D status were the strongest predictors of IL-33, independent of BMI. IL-33 mRNA expression was negatively correlated with expression of genes regulating adipocyte glucose uptake, lipid storage, and adipogenesis (e.g.glucose transporter 1 and 4 (GLUT1/4), fatty acid binding protein 4 (FABP4), and PPARG). Additionally, incubation of SAT with IL-33 reduced adipocyte glucose uptake and GLUT4 gene and protein expression.CONCLUSIONS: Our findings suggest that T2D subjects have higher IL-33 gene and protein expressionin SATthan control subjects, which is associated with insulin resistance and reduced gene expression of lipid storage and adipogenesis markers. IL-33 may reduce adipocyte glucose uptake. This opens up a potential pharmacological route for reversing insulin resistance in T2D and prediabetes.
  •  
4.
  • Vranic, Milica, et al. (författare)
  • Effects of the second-generation antipsychotic drugs aripiprazole and olanzapine on human adipocyte differentiation
  • 2023
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier. - 0303-7207 .- 1872-8057. ; 561
  • Tidskriftsartikel (refereegranskat)abstract
    • Second-generation antipsychotics (SGAs), used as the cornerstone treatment for schizophrenia and other mental disorders, can cause adverse metabolic effects (e.g. obesity and type 2 diabetes). We investigated the effects of SGAs on adipocyte differentiation and metabolism. The presence of therapeutic concentrations of aripiprazole (ARI) or its active metabolite dehydroaripiprazole (DARI) during human adipocyte differentiation impaired adipocyte glucose uptake while the expression of gene markers of fatty acid oxidation were increased. Additionally, the use of a supra-therapeutic concentration of ARI inhibited adipocyte differentiation. Furthermore, olanzapine (OLA), a highly obesogenic SGA, directly increased leptin gene expression but did not affect adipocyte differentiation and metabolism. These molecular insights are novel, and suggest that ARI, but not OLA, may directly act via alterations in adipocyte differentiation and potentially by causing a switch from glucose to lipid utilization in human adipocytes. Additionally, SGAs may effect crosstalk with other organs, such as the brain, to exert their adverse metabolic effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy