SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heyman Jakob) srt2:(2015-2019)"

Sökning: WFRF:(Heyman Jakob) > (2015-2019)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blomdin, Robin, et al. (författare)
  • Evaluating the timing of former glacier expansions in the Tian Shan : A key step towards robust spatial correlations
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 153, s. 78-96
  • Tidskriftsartikel (refereegranskat)abstract
    • The timing of past glaciation across the Tian Shan provides a proxy for past climate change in this critical area. Correlating glacial stages across the region is difficult but cosmogenic exposure ages have considerable potential. A drawback is the large observed scatter in Be-10 surface exposure data. To quantify the robustness of the dating, we compile, recalculate, and perform statistical analyses on sets of 10Be surface exposure ages from 25 moraines, consisting of 114 new and previously published ages. We assess boulder age scatter by dividing boulder groups into quality classes and rejecting boulder groups of poor quality. This allows us to distinguish and correlate robustly dated glacier limits, resulting in a more conservative chronology than advanced in previous publications. Our analysis shows that only one regional glacial stage can be reliably correlated across the Tian Shan, with glacier expansions occurring between 15 and 281 a during marine oxygen isotope stage (MIS) 2. However, there are examples of older more extensive indicators of glacial stages between MIS 3 and MIS 6. Paleoglacier extent during MIS 2 was mainly restricted to valley glaciation. Local deviations occur: in the central Kyrgyz Tian Shan paleoglaciers were more extensive and we propose that the topographic context explains this pattern. Correlation between glacial stages prior to late MIS 2 is less reliable, because of the low number of samples and/or the poor resolution of the dating. With the current resolution and spatial coverage of robustly-dated glacier limits we advise that paleoclimatic implications for the Tian Shan glacial chronology beyond MIS 2 are speculative and that continued work toward robust glacial chronologies is needed to resolve questions regarding drivers of past glaciation in the Tian Shan and Central Asia.
  •  
2.
  • Blomdin, Robin, 1986-, et al. (författare)
  • Glacial geomorphology of the Altai and Western Sayan Mountains, Central Asia
  • 2016
  • Ingår i: Journal of Maps. - : Informa UK Limited. - 1744-5647. ; 12:1, s. 123-136
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we present a map of the glacial geomorphology of the Altai andWestern Sayan Mountains, covering an area of almost 600,000 km2. Although numerous studies provide evidence for restricted Pleistocene glaciations in this area, others have hypothesized the past existence of an extensive ice sheet. To provide a framework for accurate glacial reconstructions of the Altai and Western Sayan Mountains, we present a map at a scale of 1:1,000,000 based on a mapping from 30 m resolution ASTER DEM and 15 m/30 mresolution Landsat ETM+ satellite imagery. Four landform classes have been mapped: marginal moraines, glacial lineations, hummocky terrain, and glacial valleys. Our mapping reveals an abundance of glacial erosional and depositional landforms. The distribution of these glacial landforms indicates that the Altai and Western Sayan Mountains have experienced predominantly alpine-style glaciations, with some small ice caps centred on the higher mountain peaks. Large marginal moraine complexes mark glacial advances in intermontane basins. By tracing the outer limits of present-day glaciers, glacial valleys, and moraines, we estimate that the past glacier coverage have totalled to 65,000 km2 (10.9% of the mapped area), whereas present-day glacier coverage totals only 1300 km2 (0.2% of the mapped area). This demonstrates the usefulness of remote sensing techniques for mapping the glacial geomorphology in remote mountain areas and for quantifying the past glacier dimensions. The glacial geomorphological map presented here will be used for further detailed reconstructions of the paleoglaciology and paleoclimate of the region.
  •  
3.
  • Blomdin, Robin, et al. (författare)
  • Timing and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High Asia
  • 2018
  • Ingår i: Quaternary Geochronology. - : Elsevier BV. - 1871-1014 .- 1878-0350. ; 47, s. 54-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Spanning the northern sector of High Asia, the Altai region contains a rich landform record of glaciation. We report the extent, chronologies, and dynamics of two paleoglaciers on opposite flanks of the Ikh Turgen mountains (In Russian: Chikhacheva Range), straddling the border between Russia and Mongolia, using a combination of remote sensing-based glacial geomorphological mapping, 10Be surface exposure dating, and geomorphometric analysis. On the eastern side (Mongolia), the Turgen-Asgat paleoglacier, with its potential for developing a large accumulation area (∼257 km2), expanded 40 km down valley, and mean ages from a latero-frontal moraine indicate deglaciation during marine oxygen isotope stage (MIS) 3 (45.1 ± 1.8 ka, n = 4) and MIS 2 (22.8 ± 3.3 ka, n = 5). These minimum age constraints are consistent with other 10Be glacial chronologies and paleoclimate records from the region, which indicates glacier culmination during cold and wet conditions coinciding with MIS 3 (piedmont-style glaciation; inferred for a few sites across the region) and glacier culmination during cold and dry conditions coinciding with MIS 2 (mainly valley-style glaciation; inferred from several sites across the region). On the western side (Russia), the Boguty paleoglacier had a smaller accumulation area (∼222 km2), and advanced 30 km down valley across a low gradient forefield. Surface exposure ages from two moraine complexes on this side of the mountains exhibit wide scatter (∼14–53 ka, n = 8), making paleoclimate inferences and comparison to other proxies difficult. Ice surface profile reconstructions imply that the two paleoglaciers likely shared an ice divide. © 2018 Elsevier B.V.
  •  
4.
  • Fu, Ping, et al. (författare)
  • Ice cap erosion patterns from bedrock Be-10 and Al-26, southeastern Tibetan Plateau
  • 2019
  • Ingår i: Earth Surface Processes and Landforms. - : Wiley. - 0197-9337 .- 1096-9837. ; 44:4, s. 918-932
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ Be-10 and Al-26 analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km(2) during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0-0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0-1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM.
  •  
5.
  • Gribenski, Natacha, 1986-, et al. (författare)
  • Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 149, s. 288-305
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern part of the Russian Altai Mountains is recognized for its evidence for catastrophic glacial lake outbursts. However, little is known about the late Pleistocene paleoglacial history, despite the interest in such reconstructions for constraining paleoclimate. In this study, we present a detailed paleoglaciological reconstruction of the Chagan Uzun Valley, in the Russian Altai Mountains, combining for the first time detailed geomorphological mapping, sedimentological logging, and in situ cosmogenic 10Be and 26Al surface exposure dating of glacially-transported boulders. The Chagan Uzun Valley exhibits the most impressive glacial landforms of this sector of the Altai, with extensive lobate moraine belts deposited in the intramontane Chuja Basin, reflecting a series of pronounced former glacial advances. Observations of “hillside-scale” folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, strongly indicate that these moraine belts were formed during surge-like events. Identification of surge-related features is essential for paleoclimate inference because these features correspond to a glacier system that is not in equilibrium with the contemporary climate, but instead largely influenced by various internal and external factors. Therefore, no strict relationship can be established between climatic variables and the pronounced distal glacial extent observed in the Chagan Uzun Valley/Chuja basin. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley were likely deposited during retreat of temperate valley glaciers, close to equilibrium with climate, and so most probably triggered by a general warming. Cosmogenic ages associated with the outermost, innermost, and intermediate stages all indicate deposition times clustered around 19 ka. However, the actual deposition time of the outermost moraine may slightly predate the 10Be ages due to shielding caused by subsequent lake water coverage. This chronology indicates a Marine Isotope Stage (MIS) 2 last maximum extent of the Chagan Uzun Glacier, and an onset of the deglaciation around 19 ka. This is consistent with other regional paleoclimate proxy records and with the Northern Hemisphere glaciation chronology. Finally, this study also highlights the highly dynamic environment in this area, with complex interactions between glacial events and the formation and drainage of lakes.
  •  
6.
  • Gribenski, Natacha, et al. (författare)
  • Re-evaluation of MIS 3 glaciation using cosmogenic radionuclide and single grain luminescence ages, Kanas Valley, Chinese Altai
  • 2018
  • Ingår i: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 33:1, s. 55-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous investigations observed a period of major glacial advances in Central Asia during marine oxygen isotope stage (MIS) 3 (57–29 ka), out of phase with global ice volume records. We have re-examined the Kanas moraine complex in the Altai Mountains of Central Asia, where an MIS 3 glaciation had been previously inferred. New and consistent cosmogenic exposure and single-grain luminescence ages indicate that the Kanas complex was formed during MIS 2 (29–12 ka), which brings its timing in line with the global ice volume record. We also identified a lateral moraine from a more extensive ice extent that dates to late MIS 5/MIS 4. To place our results in a wider contextual framework, we review the chronologies of another 26 proposed major MIS 3 glacial advances in Central Asia. For most of these sites, we find that the chronological data do not provide an unequivocal case for MIS 3 glaciation. Copyright © 2017 John Wiley & Sons, Ltd.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Heyman, Jakob, et al. (författare)
  • Boulder height - exposure age relationships from a global glacial Be-10 compilation
  • 2016
  • Ingår i: Quaternary Geochronology. - : Elsevier BV. - 1871-1014 .- 1878-0350. ; 34, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmogenic exposure dating of glacial boulders is commonly used to estimate the timing of past glaciations because the method enables direct dating of the duration a boulder has been exposed to cosmic rays. For successful dating, the boulders must have been fully shielded from cosmic rays prior to deposition and continuously exposed to cosmic rays ever since. A common assumption is that boulder height (the distance between the top of the boulder and the surrounding surface) is important, and that tall boulders are more likely to have been continuously exposed to cosmic rays than short boulders and therefore yield more accurate exposure ages. Here we test this assumption 'based on exposure age clustering for groups of glacial boulders (and single cobbles) Be-10 exposure ages that have recorded boulder heights (3741 boulders; 579 boulder groups with >= 3 boulders). Of the full set of boulder groups with >= 3 boulders, 21% fulfill a reduced chi square criterion (chi(2)(R) < 2) for well-clustered exposure ages. For boulder groups containing only tall boulders, the fraction of well-clustered exposure age groups is consistently larger. Moreover, this fraction of well-clustered exposure age groups increases with the minimum boulder height in each group. This result confirms the common assumption that tall boulders are generally better targets for cosmogenic exposure dating compared to short boulders. Whereas the tall boulder groups have a significantly larger fraction of well-clustered exposure age groups, there is nonetheless a dominant fraction (>50%) of the boulder groups with scattered exposure ages, highlighting the problem with prior and incomplete exposure for cosmogenic dating of glacial boulders. (C) 2016 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy