SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hirsemann H.) srt2:(2020-2023)"

Sökning: WFRF:(Hirsemann H.) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Manzanillas, L., et al. (författare)
  • Development of multi-element monolithic germanium detectors for X-ray detection at synchrotron facilities
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1047
  • Tidskriftsartikel (refereegranskat)abstract
    • In past years efforts have concentrated on the development of arrays of Silicon Drift Detectors for X-ray spectroscopy. This is in stark contrast to the little effort that has been devoted to the improvement of germanium detectors, in particular for synchrotron applications. Germanium detectors have better energy resolution and are more efficient in detecting high energy photons than silicon detectors. In this context, the detector consortium of the European project LEAPS-INNOV has set an ambitious R&D program devoted to the development of a new generation of multi-element monolithic germanium detectors for X-ray detection. In order to improve the performance of the detector under development, simulations of the different detector design options have been performed. In this contribution, the efforts in terms of R&D are outlined with a focus on the modelization of the detector geometry and first performance results. These performance results show that a signal-to-background ratio larger than 1000 can be achieved in the energy range of interest from 5 keV to 100 keV.
  •  
2.
  • Orsini, F., et al. (författare)
  • XAFS-DET : A new high throughout X-ray spectroscopy detector system developed for synchrotron applications
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1045
  • Tidskriftsartikel (refereegranskat)abstract
    • The high brilliance and coherent beams resulting from recent upgraded synchrotron radiation facilities open the way for a large range of experiments, where detectors play a key role in the techniques and methods developed to fully exploit the upgraded synchrotron. For instance, one of the major limitations of XAFS experiment is the performance of the detectors. In order to be able to measure more challenging samples and to cope with the very high photon flux of the current and future (diffraction limited) sources, technological developments of detectors are necessary. In this framework, the germanium detector developed in the European project LEAPS-INNOV aims at improving several technological aspects. This type of detector represents a very important class of instruments for X-ray spectroscopy due to the fact that they enable to detect efficiently photons of considerable higher energy with respect to silicon detectors. The objective of this project consists in pushing the detector performance beyond the state-of-the-art. Preliminary layout and main choices for the design studies of this new detector are presented in this paper.
  •  
3.
  • Graafsma, Heinz, et al. (författare)
  • Detector developments for photon science at DESY
  • 2023
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The past, current and planned future developments of X-ray imagers in the Photon-Science Detector Group at DESY-Hamburg is presented. the X-ray imagers are custom developed and tailored to the different X-ray sources in Hamburg, including the storage ring PETRA III/IV; the VUV-soft X-ray free electron laser FLASH, and the European Free-Electron Laser. Each source puts different requirements on the X-ray detectors, which is described in detail, together with the technical solutions implemented. 
  •  
4.
  • Mezza, D., et al. (författare)
  • Calibration methods for charge integrating detectors
  • 2022
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 1024
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the introduction of the extremely intense X-ray free electron lasers, the need for low noise, high dynamic range and potentially fast charge integrating detectors has increased significantly. Among all the problems that research and development groups have to face in the development of such detectors, their calibration represents one of the most challenging and the collaboration between the detector development and user groups is of fundamental importance. The main challenge is to develop a calibration suite that is capable to test the detector over a wide dynamic range, with a high granularity and a very high linearity, together with a certain radiation tolerance and the possibility to well define the timings and the synchronization with the detector. Practical considerations have also to be made like the possibility to calibrate the detector in a reasonable time, the availability of the calibration source at the experimental place and so on. Such a calibration test suite is often not represented by a single source but by several sources that can cover different parts of the dynamic range and that need to be cross calibrated to have a final calibration curve. In this respect an essential part of the calibration is also to develop a mathematical model that allows calibrating the entire dynamic range, taking into account features that are calibration source and/or detector specific. The aim of this contribution is to compare the calibration for the AGIPD detector using several calibration sources such as internal current source, backside pulsing, IR pulsed laser, LED light and mono-energetic protons. The mathematical procedure used to calibrate the different sources will be discussed in great detail showing how to take into account a few shortcomings (like pixel coupling) that are common for many charge integrating detectors. This work has been carried out in the frame of the AGIPD project for the European X-ray Free Electron Laser. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy